
EFFICIENT DATA STORAGE AND RETRIEVAL

TECHNIQUES FOR HIGH-PERFORMANCE VIDEO

SERVERS

By

Jinsung Cho

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

SEOUL NATIONAL UNIVERSITY

SEOUL 151-742, KOREA

DECEMBER 1999

c� Copyright by Jinsung Cho, 2000

SEOUL NATIONAL UNIVERSITY

DEPARTMENT OF

COMPUTER ENGINEERING

The undersigned hereby certify that they have read

and recommend to the Faculty of Graduate Studies for

acceptance a thesis entitled “Efficient Data Storage and

Retrieval Techniques for High-performance Video Servers”

by Jinsung Cho in partial fulfillment of the requirements for the

degree ofDoctor of Philosophy.

Dated: December 1999

Chief Examiner:
Kim, Chong Sang

Research Supervisor:
Shin, Heonshik

Examing Committee:
Choi, Yanghee

Yeom, Heon Young

Choi, Chang Ryeol

To my family with love and respect

Abstract

During the past decade we have paid great attention to a video-on-demand service

which provides the combined facilities of a video rental store over high-speed net-

works. The realization of such services requires the development of video servers

that support efficient mechanisms for storing and retrieving video data. The study

on video servers is highly motivated by the fact that video-on-demand services are

becoming increasingly important and widespread in the entertainment, education,

and telecommunications industries. In this thesis we design and/or implement

video servers in various environments by providing efficient storage and retrieval

of video data.

This thesis consists of three main parts: storage and retrieval in a single server,

in a large-scale server, and in a multi-resolution video server. In the first part, we

begin by designing and implementing a small-scale single server. The large size

and bandwidth of video data require a single server approach to adopt disk arrays

for its storage subsystem. Through a simple performance analysis for disk arrays,

a prototype of the small-scale video server is developed.

The second part of this thesis explores the issue on designing a large-scale

video server. Limitations in scalability of the single server approach lead to a

i

large number of such nodes connected to each other. First, given a large number

of nodes, we describe how to cluster them into parallel servers. Next, storage

and retrieval in a parallel server are presented including data placement, retrieval

scheduling, and communication scheduling between nodes. The data placement is

based on the block-striping technique verified in the single server and, by the pro-

posed scheduling algorithms, disk bandwidth in a parallel server can be fully uti-

lized and communication between nodes in a parallel server is guaranteed conflict-

free. In addition, a queueing model is proposed with a parallel server being an in-

dependent service entity in the large-scale server and its performance is analyzed.

The final part addresses the issue on storage and retrieval of multi-resolution

video. To this end, we describe a design framework for multi-resolution video

servers and implement a prototype. First, we propose a multi-resolution video

stream model which can be implemented by various scalable compression tech-

niques. Second, given the proposed stream model, we devise a data placement

scheme to store scalable video data across disks in the server. The scheme ex-

ploits both concurrency and parallelism offered by striping data across the disks

and achieves the disk load balancing during any resolution video service. Next,

the retrieval of multi-resolution video is described. The deterministic access prop-

erty of the placement scheme permits the retrieval scheduling to be performed

on each disk independently and to support interactive operations simply by re-

constructing the input parameters of the scheduler. We also present an efficient

admission control algorithm which precisely estimates the actual disk workload

for the given resolution services. In addition, through the implementation of the

multi-resolution video manager, we validate the proposed scheme.

ii

Keywords: video server architecture, storage and retrieval, disk arrays, retrieval

scheduling, communication scheduling, multi-resolution video, interactive opera-

tions, admission control

iii

Table of Contents

Abstract i

1 Introduction 1

1.1 Motivation and objective 1

1.2 Research contribution. 3

1.2.1 Storage and retrieval in a single server 3

1.2.2 Storage and retrieval in a large-scale server 4

1.2.3 Storage and retrieval in a multi-resolution video server . . 5

1.3 Organization .. 6

2 Background 8

2.1 Research issues on video servers 8

2.1.1 Basic design issues 8

2.1.2 Further issues. 10

2.2 Related work . 14

iv

2.2.1 Storage and retrieval in a single server 14

2.2.2 Storage and retrieval in a large-scale server 16

2.2.3 Storage and retrieval in a multi-resolution video server . . 20

3 Storage and retrieval in a single server 23

3.1 System model. 24

3.2 Performance analysis of disk arrays 25

3.3 Simulation studies . .. 29

3.4 Implementation of a disk array manager: DAman 34

3.4.1 Overall architecture 35

3.4.2 Empirical evaluation 39

4 Storage and retrieval in a large-scale server 45

4.1 System model. 46

4.2 Storage and retrieval in a parallel server 49

4.2.1 Data placement 50

4.2.2 Retrieval scheduling 52

4.2.3 Communication scheduling 56

4.3 Configuration of a large-scale server 59

4.4 Queueing analysis of a large-scale server 64

4.4.1 Queueing model 65

4.4.2 Performance analysis 68

v

5 Storage and retrieval in a multi-resolution video server 73

5.1 System model. 74

5.1.1 Multi-resolution video stream model 74

5.1.2 Server model. 78

5.2 Data placement for multi-resolution video 79

5.3 Data retrieval for multi-resolution video 86

5.3.1 Support for interactive operations 88

5.3.2 Admission control 90

5.4 Experimental evaluation 93

5.4.1 Disk load balancing 94

5.4.2 Admission control 97

5.5 Implementation of a multi-resolution video manager: MRVman . 103

5.5.1 Overall architecture 104

5.5.2 Multi-resolution video file system 105

5.5.3 Multi-resolution video on-demand system 108

5.5.4 Empirical evaluation 109

6 Conclusions 114

A Proof of Theorem 5.1 118

Bibliography 120

vi

List of Figures

3.1 Architecture of a single server 24

3.2 Relationship betweenToverhead andN 28

3.3 Simulation model . .. 30

3.4 Comparison of striping policies 31

3.5 Effect of the number of disks (AID5,s � ��KB) 33

3.6 Comparison of placement schemes (AID5,s � ��KB) 33

3.7 Overall architecture of DAman 35

3.8 DAman file system structure 36

3.9 Run-time libraries for DAman 37

3.10 Experiment model . .. 39

3.11 Comparison of striping policies (4 disks) 41

vii

3.12 Comparison of striping policies (2 disks) 41

3.13 Comparison between no striping and AID5 (4 disks) 43

3.14 Effect of the number of disks (AID5) 43

4.1 Configuration of a large-scale video server 47

4.2 Architecture of a parallel server (server cluster). 48

4.3 An example of data placement 51

4.4 A scenario of simple round scheduling in a storage node 53

4.5 A scenario of efficient round scheduling in a storage node 54

4.6 Effect of the retrieval scheduling 55

4.7 Data flow in a parallel server 58

4.8 Problem description on the configuration of a large-scale server . . 59

4.9 Number of clients not serviced (worst case) 62

4.10 Average utilization of server clusters (worst case) 62

4.11 Average utilization of server clusters (average case) 63

4.12 Average waiting time (average case) 64

4.13 Queueing model of a large-scale server 66

4.14 Validation of queueing model 69

viii

4.15 Effect of disk and network bandwidth 70

4.16 Effect of read-ahead .. 71

4.17 Effect of data block size 71

5.1 z-level multi-resolution video stream model 75

5.2 Architecture of multi-resolution video server 78

5.3 Striping strategies: concurrency vs. parallelism. 81

5.4 An example of data placement for multi-resolution video 84

5.5 Scheduler at diski . 87

5.6 Distribution of disk workloads for a given resolution service . . . 95

5.7 Distribution of disk workload for 300 clients 96

5.8 Estimation with existing schemes 98

5.9 An example of the 3rd level resolution service 99

5.10 Estimation with the proposed scheme 101

5.11 Effect of the request scheduling 102

5.12 Overall architecture of MRVman 104

5.13 Data placement in MRVman 105

5.14 MRVman file system structure 106

ix

5.15 Run-time libraries for MRVman 107

5.16 Client window in the prototype 109

x

List of Tables

3.1 Disk parameters used in the simulation (HP 97560) 31

3.2 The proposed storage architecture for a single server 34

3.3 Utilities for DAman . 38

3.4 Execution time of DAman (�s) 40

4.1 Parameters used in the simulation. 60

4.2 The alternatives in the configuration 61

4.3 Parameters used in the analysis 68

5.1 Advantages of the proposed data placement scheme 83

5.2 Average bit rate (Mbps) of each resolution level for trace data . . . 94

5.3 Utilities for MRVman. 108

5.4 Execution time of MRVman (�s) 110

xi

5.5 Effect on storage overhead and retrieval time of logical block size 111

5.6 Effect of the number of disks 111

5.7 Effect of video resolution 112

5.8 Effect of multiple streams 112

5.9 Number of disk blocks retrieved in each disk (l � ����) 113

xii

Chapter 1

Introduction

1.1 Motivation and objective

Recent advances in computer technology and demands of video, audio, and text

integration services have provided driving forces behind the emergence of vari-

ous multimedia applications[Agne96, Bufo94]. Among them, we have paid great

attention to a video-on-demand (VOD) service which provides the combined fa-

cilities of a video rental store over high-speed networks. VOD services are be-

coming increasingly important and widespread in the entertainment, education,

and telecommunications industries [Andl96, Chan96b]. The architecture for these

services consists of video servers connected to client sites via high-speed network.

Clients can retrieve video streams from the server for real-time playback. Further-

more, the access may be interactive because clients are likely to stop, pause, and

resume playback and, in some cases, to perform fastforward or rewind operations.

1

The realization of such services requires the development of video servers that

support efficient mechanisms for storing and delivering video streams. The fun-

damental problem in developing video servers is that the delivery and playback of

video streams must be performed at real-time rate [Gemm95]. Unlike other types

of data, video data is characterized by its large size and bandwidth. Although

compressed, a two-hours long MPEG-1 [Gall91] video stream requires 1.5Mbps

bandwidth and 1.3GB storage space. Video servers should support for efficient

storage and retrieval techniques of video data in order to provide such large band-

width and space of storage subsystem for a large number of clients.

The three main categories of data storage today are tape, disk, and memory.

Tape storage is the least expensive and tape drive throughput is also reasonable

at about 1MB/s. However, the latency between accesses to different sessions is

typically on the order of seconds or minutes. This latency is too high to support

multiple independent clients, and as a result, tape drives are limited to one user

at a time. On the other extreme, main memory is very fast and has extremely

low latency, but the cost is about two orders of magnitude higher than disk. A

reasonable compromise between the two extremes is disk-based storage and re-

trieval. In addition, disk arrays, or RAID [Patt88], have been proved to provide

cost-effective storage and high-bandwidth transfer capabilities and are becoming

popular in video-on-demand systems. This thesis targets disk-based data storage

and retrieval for video servers.

The objective of this thesis is to design video servers in various environments

and to evaluate the effectiveness of them through simulation and implementation.

For effectiveness, we define the performance metrics of video servers asconcur-

rency, interactivity cost, andservice latency. Video servers should be able to

2

provide services foras many concurrent clients as possiblewhile guaranteeing

their real-time playback requirements. In addition,interactive operationssuch as

pause, resume, fastforward, rewind, and slow playback, should be supported with

reasonable cost. Theservice latencyupon startup or interactive operations should

be acceptable. In summary this thesis aims at designing video servers that can

service as many clients as possible by fully utilizing the server resources while

providing acceptable interactivity cost and service latency.

1.2 Research contribution

1.2.1 Storage and retrieval in a single server

Video servers range from a standard PC for small-scale systems to massively par-

allel or distributed computers for large-scale systems [Lee98]. First, we tackle

the problems of designing and implementing a small-scale single server which is

equipped with disk arrays. The single server approach for video servers needs to

adopt disk arrays because video servers are required to provide large storage space

and transmission bandwidth.

A simple performance analysis for disk arrays is conducted through simulation

and the proper storage architecture for a single server is proposed [Cho95]. Based

on the proposed architecture, we implement a software disk array manager which

controls SCSI adapters and SCSI disks [Cho96]. The implementation details are

described and its performance is empirically evaluated and compared with the

simulation result.

3

On top of the disk array manager, a video server is developed. By integrating

the server with a VOD system implemented in [Ahn95], we figure out the behavior

of video servers and get some feedbacks.

1.2.2 Storage and retrieval in a large-scale server

The single server approach, however, has limitations in scalability. For the pur-

pose of providing video services for the public, a video server should store thou-

sands of video streams and serve tens of thousands of concurrent clients. For

such a large-scale video server, we focus on the parallel server architecture which

consists of multiple nodes connected by an interconnection network.

First of all, given a large number of nodes, we describe how to cluster such

nodes into parallel servers [Cho97a, Cho97e]. In other words, a large-scale server

consists of multiple parallel servers while a parallel server is comprised of multi-

ple nodes.

Next, storage and retrieval in a parallel server are addressed [Cho97a, Cho97e]

including data placement, retrieval scheduling, and communication scheduling

between nodes. The data placement is based on the block-striping technique

(AID5) validated through the work on single server. By the proposed scheduling

algorithms, disk bandwidth in a parallel server can be fully utilized and commu-

nication between nodes in a parallel server is guaranteed conflict-free.

Then, each parallel server in a large-scale video server provides individual

services for clients. A queueing model is proposed with a parallel server being an

independent service entity and its performance is analyzed [Cho97b, Cho98a]

4

1.2.3 Storage and retrieval in a multi-resolution video server

The final issue of the thesis is to design and implement a video server which

provides multiple resolution video services. A multi-resolution video stream is a

video sequence encoded such that subsets of the full resolution video bit stream

can be decoded to recreate lower resolution video streams. Employing the multi-

resolution video in video servers provides benefits including heterogeneous client

support, storage efficiency, adaptive service, and interactive operations support.

We present a design framework for multi-resolution video servers by describ-

ing multi-resolution stream model, data storage and retrieval of multi-resolution

video, interactive operations support, and admission control [Cho97c, Cho99a,

Cho99b].

First, az-level multi-resolution video stream model is proposed. In the multi-

resolution video stream model, each video stream can be provided withz levels

of quality and the QoS parameter is represented by the number of components in

a segment. We also describe how to construct the proposed multi-resolution video

stream model from the current scalable compression techniques.

Second, storage and retrieval of multi-resolution video are explored. The data

placement scheme exploits both of concurrency and parallelism offered by strip-

ing data across disks and achieves the disk load balancing during any resolution

video service. The deterministic access property of the placement scheme per-

mits the retrieval scheduling to be performed on each disk independently and to

support interactive operations simply by reconstructing the input parameters of

input scheduler. We also present an efficient admission control algorithm which

precisely estimates the actual disk workload for the given resolution services.

5

Finally, we describe implementation experiences of a multi-resolution video

server [Cho98b, Cho98c]. For the quick implementation, we extend the soft-

ware disk array manager mentioned in Subsection 1.2.1 to incorporate the storage

and retrieval of multi-resolution video and employ MPEG-1 streams with existing

hardware decoder for multi-resolution video streams. MPEG-1 streams are recon-

structed into the multi-resolution video stream model in temporal dimension. A

prototype of the multi-resolution VOD system exhibits that the visual quality of

multi-resolution playback and fastforward playback is acceptable.

1.3 Organization

The rest of this thesis is organized as follows.

Chapter 2 gives background for the thesis. Research issues on video servers

are addressed from basics to advanced topics. Related researches on video servers

are also described.

Chapter 3 designs and implements a small-scale single server equipped with

disk arrays. Given the system model, a simple performance analysis for disk

arrays is conducted and implementation details for a software disk array manager

follow.

Chapter 4 tackles the problems of designing a large-scale video server. Storage

and retrieval in a parallel server which consists of multiple nodes are described

including data placement, retrieval scheduling, and communication scheduling

between nodes. Given a large number of nodes, the configuration of a large-scale

6

server, that is, how to cluster such nodes into parallel servers is also addressed

following a queueing analysis of the large-scale server.

Chapter 5 presents a design framework for multi-resolution video servers by

describing multi-resolution video stream model, data storage and retrieval of multi-

resolution video, interactive operations support, and admission control. The im-

pacts of mobility on video servers are also identified following support for mobile

computing environment of the multi-resolution video server. In addition, a pro-

totype of the multi-resolution video server is developed and its performance is

measured and analyzed.

Finally, Chapter 6 summarizes the results obtained from this thesis with some

concluding remarks.

7

Chapter 2

Background

2.1 Research issues on video servers

In this section, we introduce various research issues on video servers from basics

to advanced topics. The issues, however, are closely coupled with each other.

2.1.1 Basic design issues

A. Guaranteed retrieval of continuous media

Due to its strict timing constraint of continuous media (digital video and au-

dio), early works focus on its guaranteed retrieval and admission control [Rang91a,

8

Gemm92, Ande92, Loug92, Cho94]. Their works found a framework for de-

signing continuous media servers including round-based scheduling, disk perfor-

mance analysis, admission control strategy, and buffer management. Most of their

works, however, are based on the worst-case disk performance and constant bit

rate streams.

B. Disk scheduling

For improving the disk performance, several works are performed on the disk

head scheduling. An elevator-type or SCAN disk scheduling [Pete85] receives

much attention in the literature [Kand93, Cho94] and its variation, or SCAN-EDF

algorithm is proposed in [Redd93]. In order to provide the tradeoff between disk

throughput and buffer requirements, Yuet al. propose a grouped sweeping scheme

by integrating FIFO and SCAN algorithms [Yu92] and extend it to accommodate

heterogeneous streams [Chen93].

C. Data placement

Placing video streams on a single disk or multiple disks in an array is an-

other issue for the increased performance of storage subsystem. Rangan and Vin

[Rang93] propose a constrained allocation policy of digital continuous media on

a single disk. By employing a probabilistic model of video popularity, Little and

Venkatesh [Litt93] describe data distribution and replication to balance client re-

quests with available disk I/O bandwidth. In order to place video data across

multiple disks, Bersonet al. [Bers94, Bers95] propose a flexible technique called

9

staggered striping and Vinet al. [Vin95] identify two placement policies for opti-

mizing the disk-array performance. Wanget al. [Wang97b] formulate the problem

of video file allocation over disk arrays and present some heuristic algorithms to

find the near-optimal solutions. They argue that the consequence of replication

and striping of hot movie titles is the potential increase on the required number of

disk arrays.

D. Buffer management

Most of early works assume the sufficiently large buffers. Wu and Yu [Wu96,

Wu98] study the issue of dynamically utilizing the spare disk bandwidth and

buffer to maximize the system throughput of a video server. They introduce the

concept of minimizing buffer consumption to select an appropriate media stream

to use the spare disk bandwidth. Ng and Yang [Ng96] study the problem of how

to maximize the throughput of a continuous-media system, given fixed amounts

of buffer space and disk bandwidth both predetermined at design time. Their ap-

proach is to maximize the utilizations of disk and buffers.

In addition, several works explain the issues for video servers in detail [Gemm95,

Ozde95, Mour96, Sriv97].

2.1.2 Further issues

A. VBR stream manipulation

10

Variable bit rate (VBR) video streams generate undeterministic workload, so

that a careful manipulation should be conducted in order to fully utilize server re-

sources. Admission control algorithms are proposed for tightly estimating work-

loads of VBR streams [Vin94, Neuf96, Maka97] and scheduling support for VBR

streams are given in [Paek96, Rosa96, Lee97, Pan98].

B. Support for interactive operations

Video servers should provide interactive operations such as stop, pause, re-

sume, fastforward, and rewind. Among them, fast scan operations (fastforward

and rewind) may require additional disk and network bandwidth. A lot of works

are performed to support them with acceptable cost. Dey-Sircaret al. [Dey94]

introduce an effective FF/Rew service which provides FF/Rew capabilities with

associated statistical QoS guarantees. Chenet al. propose a segment skipping

scheme in the server’s side [Chen94] and a stream conversion scheme in the

client’s side [Chen96], respectively. Kwonet al. [Kwon97] support interactive op-

erations efficiently by a disk placement scheme called PRR. Wu and Shu [Wu97]

present two basic scheduling approach, the prefetching approach and the grouping

approach for both fine-grain and coarse-grain data blocks. In addition, support for

interactive operations in multicast VOD servers is given in [Abra98]

C. Caching and page replacement

Although the performance gains of caching and page replacement schemes are

relatively small due to the continuous access property of video streams, several

works tackle the problems of caching and page replacement schemes including an

11

interval caching [Dan95] and new basic replacement algorithm and the distance-

based replacement algorithm [Ozde96]. Reddy [Redd97] studies several caching

strategies for improving the overall performance of the server and shows that re-

quest response time can be improved by some of the replacement policies that

take size of the request into account.

D. Cost-effective design

The number of clients that can be serviced simultaneously can be increased

just by adding disks and/or buffer memory to video servers. Hence, the cost-

effective design is a significant issue for video servers. Doganata and Tantawi

[Doga93] present an analytical tool which allows a user to perform a cost/ perfor-

mance analysis of video servers with hierarchical storage. The underlying model

comprises multiple systems, main memory, expanded storage, disks and a tape

library. They argue that the tool optimally allocates the video files to different

storage media based on the system parameters and the video file request probabil-

ity distribution. Chervenaket al. [Cher95] propose that striped disk farms achieve

close to full disk utilization, good load balancing, and the lowest cost per video

stream and Chang and Zakhor provide cost analyses for VBR video servers in

[Chan96a].

E. Zoned disk

Zoned disks represent an emerging trend in disk technology. Several works

study the placement of multimedia data on zoned disks that maximizes disk through-

put. Tewariet al. [Tewa96b] describe an optimal placement of fixed-size blocks

12

on zoned disks that minimizes response time using the differences in popularity

and access rates among the multimedia objects. Similarly, Kimet al. [Kim97b]

propose an efficient video block placement scheme considering the characteris-

tics of zoned disks and clients’ skewed access patterns for some popular videos.

In [Tong98], Tonget al. propose two schemes, free-� and fixed-� schemes, in a

unified framework of rearranging the zone layout in a logical manner.

F. Hierarchical storage management

Hierarchical storage structures consisting of memory, disk, and tertiary storage

devices provide a cost-effective solution for the large size of multimedia reposito-

ries. Ghandeharizadeh and Shahabi [Ghan94] investigate the role of hierarchical

multimedia storage managers and describe a piplelining mechanism that overlaps

the display of a portion of an object from the disk drive with the materialization of

its remainder from the tertiary. Lau and Lui [Lau97] consider a two-tier storage

architecture with a robotic tape library as the vast near-line storage and an on-line

disk system as the front-line storage. They also propose some tape-scheduling

algorithms. Wanget al. present techniques for managing disks as a buffer for

the tertiary storage of multimedia servers. They propose a new staging technique

called SEP in [Wang96] and extend it so called BiHOP in [Wang97c].

G. Real-time scheduling support

Since video data has periodic nature, the existing real-time scheduling theory

can be applied to multimedia applications. Tindellet al. [Tind93] apply their fixed

priority preemptive scheduling theory to multimedia disk traffic for the guaranteed

13

retrieval. Recently, Mok and Chen [Mok96] propose a new multiframe model for

the task of which the execution time varies from one instance to another, and ap-

ply it to multimedia streams. Kaneko and Stankovic [Kane96] give an integrated

scheduling of multimedia and hard real-time tasks. Hamdaoui and Ramanathan

[Hamd95] introduce the notion of�m� k�-firm deadlines and propose a distance-

based priority assignment technique to reduce the probability of dynamic failures

which indicate if fewer thanm out of anyk consecutive instances meet their dead-

lines. In [Han95], by raising the priority of the urgent frames and pre-scheduling

them with the backwards-EDF algorithm, the urgent frames can meet their dead-

lines and the normal frames have more room for their execution. We propose a

simple but efficient scheduling scheme for multimedia streams with firm deadlines

using heuristic functions in [Cho97d].

2.2 Related work

There exist a lot of works related to video servers. In this section, we introduce

some well-known works on video servers classified by the issues which this thesis

concerns.

2.2.1 Storage and retrieval in a single server

Early works on video servers are founded on a single disk or multiple disks in a

single server architecture. Rangan and Vin [Rang91a, Rang91b, Rang92, Vin93]

present a model that relates disk and device characteristics to the recording rate,

14

and derive storage granularity and scattering parameters that guarantee continu-

ous access. They also develop admission control algorithms in order for the server

to support multiple concurrent clients. A prototype multimedia file system is im-

plemented, in which policies and algorithms for video storage are experimented.

Andersonet al. [Ande92] develop a Continuous Media File System (CMFS)

to support real-time storage and retrieval of continuous media data (digital video

and audio) on a single disk. CMFS addresses several interrelated design issues:

real-time semantics of sessions, disk layout, an admission control algorithm for

new sessions, and disk scheduling policy.

Lougher and Shepherd [Loug92, Loug93] describe the design of a file server

specially optimized for the storage and retrieval of continuous media including

disk striping, optimized disk layouts, real-time algorithms, and disk head schedul-

ing. They also implement a prototype of continuous media storage server equipped

with multiple disks.

Starlight Networks Inc. introduces a product for a single server equipped with

disk arrays. In [Toba93], Tobagiet al. describe a video applications server soft-

ware focusing primarily on its underlying storage management system. The sys-

tem manages an array of disks and uses a disk access algorithm particularly suit-

able for video streaming. They also characterize the performance of the system

by determining the number of streams that can be supported for a given memory

size and a given service latency requirement.

Huynh and Khoshgoftaar [Huyn94] take an engineering approach and give

an extensive performance analysis of the subsystem control block architecture of

IBM-PC and disk array technology in typical video server environments. They

15

reveal that, with one video data stream, the five-disk RAID-5 array is a little bit

better than the non-RAID, four-disk system. However, when the video server

has to support multiple, simultaneous video data stream, the token ring network

becomes the system bottleneck, so there is not much difference between RAID-5

and non-RAID.

Bell Lab. implements a multimedia storage systemFellini by providing the

software APIs for it. In [Chun96], Martinet al. describe the architecture of

Fellini. Fellini supports the storage and retrieval of both continuous media data

as well as conventional data such as text, binary, and image. They argue that the

algorithms for retrieving data from disks provide high throughput by reducing the

seek latency time and that the buffer management scheme exploits the sequential

access patterns for continuous media data in order to determine the buffer pages

to be replaced from the cache.

2.2.2 Storage and retrieval in a large-scale server

The IBM Almaden research center implements a network file serverSharkfor

digital video and other continuous media data [Hask93].Sharkscales from small

desktop machines to the SP-2 parallel supercomputer.Shark’s primary features

are support for continuous-time data, scalablility, high availability, and manage-

ability, all of which are crucial in its role in large-scale video servers.

Ghanderharizadeh and Ramos [Ghan93] describe a parallel multimedia infor-

mation system and the key technical ideas that enable it to support a real-time dis-

play of multimedia objects. They adopt a shared-nothing architecture, so that the

16

client stations are independent of the backend processors that contain multimedia

data. In order to support simultaneous retrieval of an object for different clients,

they suggest two alternative approaches (disk multitasking and data replication)

and investigate the tradeoffs associated with each approach using a simulation

model.

In order to support access to all types of conventional data stored in Oracle

relational and text databases, Orcale develops an Oracle Media Server providing

consumer based interactive access to multimedia data [Laur94]. The media server

supports storage and playback of real-time audio and video data. The server pro-

vides a platform for distributed client-server computing and access to data over

asymmetric real-time networks. A service mechanism allows applications to be

split such that client devices can focus on presentation, while backend services

running in a distributed server complex provide access to data via messaging or

lightweight RPC.

Freedman and DeWitt [Free95] perform a detailed simulation analysis of the

SPIFFI scalable video-on-demand system. They introduce and analyze the perfor-

mance of video server algorithms for real-time disk scheduling, page replacement,

and prefetching, and show that the love prefetch page replacement and delayed

prefetching algorithms substantially reduce the memory requirements, and thus,

reduce the cost of a video server. They also demonstrate that while the non-real-

time elevator disk scheduling algorithm can function well in a relatively small

video server (16 disks) with plenty of memory at the terminals, it does not scale

to larger systems.

Bell Lab. develops a distributed multimedia serverCalliopeconstructed from

17

personal computers. InCalliope, each PC provides independent service for client;

i.e. a video file is not striped across multiple nodes. Heybeyet al. [Heyb96] show

from their preliminary performance measurements thatCalliope can be scaled

from a single PC producing about 22 MPEG-1 video streams to hundreds of PCs

producing thousands of streams. They argue thatCalliope is cost-effective be-

cause it requires only commodity hardware and portable because it runs under

Unix. In similar architecture toCalliope, Kim et al. [Kim97a] design and imple-

ment a scalable, multi-purpose multimedia-on-demand system.

Reddy [Redd95] addresses the problem of distributing and scheduling videos

on a multiprocessor video server and the issue of communication scheduling over

the multiprocessor switch for the playback of the scheduled videos. The proposed

solution minimizes contention for links over the switch and makes video schedul-

ing very simple. He exploits the network topology of the multiprocessor to derive

such a sequence that guarantees freedom from communication conflicts.

Microsoft Corp. develops a distributed, fault-tolerant real-time file server

Tiger [Bolo96] which provides data streams at a constant, guaranteed rate to a

large number of clients, in addition to supporting more traditional file system op-

erations.Tiger runs on a collection of personal computers connected by an ATM

switch. Boloskyet al. discuss that the fundamental problem of the design ofTiger

is that of efficiently balancing user load against limited disk, network, and I/O bus

resources. They also argue thatTiger accomplishes this balancing by striping file

data across all disks and all computers in the distributed system, and then allocat-

ing data streams in a schedule that rotates across the disks.

Tewariet al. [Tewa96a] investigate the suitability of clustered architectures for

18

designing scalable multimedia servers. Specifically, through an analytic model of

clustered multimedia servers, they evaluate the effcts of architectural design of

the cluster, the size of the unit of data interleaving, and read-ahead buffering and

scheduling on the real-time performance guarantees provided by the server. They

also implement a prototype based on the results of their analysis.

The IBM Watson research center designs and implements a scalable collec-

tion of heterogeneous multimedia servers (Research Multimedia Server Complex)

which uses a variety of communications protocols and network types to deliver

multimedia objects to clients [Dan97]. The Research Server Complex Manager

(RSCM) provides a uniform external interface to applications hiding the hetero-

geneity and making the server complex appear as individual requests. Danet al.

justify the particular functions of the RSCM and explains the design decisions and

tradeoffs.

Buddhikotet al. [Gros97] suggest the Massively-parallel And Real-time Stor-

age (MARS) architecture for the design and prototype implementation of a large-

scale video server. MARS exploits some of the well-known techniques in parallel

I/O, such as data striping and an innovative ATM based interconnect inside the

server to achieve a scalable architecture that transparently connects storage de-

vices to an ATM-based broadband network. The ATM interconnect within the

server employs a custom ASIC called ATM Port Interconnect Controller (APIC).

The architecture relies on innovative data striping and real-time scheduling to al-

low a large number of guaranteed concurrent accesses and uses separation of meta

data from real data to achieve a direct flow of the media streams between the stor-

age devices and the network. They argue that the system architecture is scalable

in terms of the number of supported clients and the throughput.

19

2.2.3 Storage and retrieval in a multi-resolution video server

Although a number of works have been done on multi-resolution or scalable cod-

ing of video data [Chia94, Laza94, Lian97, Tan96, Wang97a] and on transmission

of multi-resolution video in communication network [Delg94, Hunt, Mc96], a rel-

atively small number of works address the issue on multi-resolution video servers.

Chiueh and Katz [Chiu93] employ the specific multi-resolution video repre-

sentation coded in a Laplacian or Gaussian pyramid and lay out video data on

a two-dimensional disk array. The result of a simulation study shows that un-

der synthetic workload the multi-resolution scheme performs significantly better

in terms of I/O rate, average waiting time, and average physical data bandwidth

requirement as compared with full-rate single resolution video.

Keeton and Katz [Keet93] propose a systems approach to providing video ser-

vice which integrates the multi-resolution data generated by scalable compression

algorithms with the high-bandwidth, high-capacity storage provided by disk ar-

rays. They argue from their simulation results that the storage of multi-resolution

video permits service to considerably more clients than the storage of single-

resolution video and that retrieval of data striped across the disks of an array can

be performed much more efficiently than retrieval from a single disk.

Chang and Zakhor [Chan94, Chan96a, Chan97] consider the placement of

scalable video data on single and multiple disks for storage and retrieval. For the

single-disk case, they explore the principle of constant frame grouping from scal-

able video data. They also examine the qualities of video reconstructions obtained

from a real disk video server and find the scalable video more visually appealing.

20

Considering the multiple disk scenario, they prove that periodic interleaving re-

sults in lower system delay.

Paeket al. [Paek95] present a flexible data placement strategy for independent

parallel disk arrays. The trade-off between utilization efficiency and interactive

delay is investigated for the data placement strategy. Based on the trade-off, they

show the advantage of video servers supporting a range of interactivity QoS. They

also argue that using scalable video improves the utilization and interactivity per-

formance of a video server. They use three-layer scalable MPEG2 digital video to

support resolution QoS.

Chenet al. [Chen95] suggest an idea of staggering scalable data blocks con-

sidering video data corresponding to different rates of the video clip are not re-

quired to reside in the same disk. On the basis of the idea, they propose and ex-

plore the approach of rate staggering,i.e. staggering video data in the disk array

based on data rates. They argue that the advantages of the proposed rate stagger-

ing method include: (1) minimizing the intermediate buffer space required at the

server, (2) achieving better load balancing due to finer scheduling granularity, and

(3) alleviating the disk bandwidth fragmentation. However, their argument about

(1) has some technical flaws.

Shenoy and Vin [Shen95, Shen98] present a placement algorithm that inter-

leaves multi-resolution video streams on a disk array and enables a video server to

efficiently support playback of these streams at different resolution levels. They

then combine this placement algorithm with a scalable compression technique to

efficiently support interactive scan operations. They present an analytical model

21

for evaluating the impact of the scan operations on the performance of disk-array-

based servers. The experiments demonstrate that exploiting the characteristics of

video streams and human perceptual tolerance enables a server to support interac-

tive operations without any additional overhead.

Beckmannet al. [Beck98] describe an admission control policy in which the

quality of service is negotiated at stream initiation and is a function of both the

desired quality of service and the available bandwidth resources. They argue that

the advantage of their approach is the ability to robustly service large numbers

of clients, while providing increased quality of service during low usage periods.

Several simple algorithms for implementing the policy are proposed and evaluated

via simulation.

22

Chapter 3

Storage and retrieval in a single

server

In this chapter, we design and implement a video server equipped with a disk array

for the storage subsystem. The single server approach for video servers needs to

adopt disk arrays because video servers are required to provide large storage space

and transmission bandwidth. Disk arrays reveal large differences in performance

according to their organization and data distribution across disks [Cata95]. This

chapter analyzes the performance of disk arrays for storage architecture of video

servers and implement a software-based disk array for the video server on the

basis of the performance analysis.

23

SCSI
Disk

Local
DiskCPU Memory

Network
Adapter

SCSI
Adapter

SCSI
Disk

SCSI
Disk

SCSI
Disk

System bus

SCSI bus

Figure 3.1: Architecture of a single server

3.1 System model

First of all, we begin by taking a small-scale single server approach in this chapter.

The server is based on a personal computer (PC) equipped with a SCSI adapter

and multiple SCSI hard disk drives. The server architecture is shown in Figure 3.1.

The server consists of processor, memory system, system bus, disk subsystem, and

network subsystem. A SCSI adapter and SCSI hard disk drives comprise the disk

subsystem and we take a software-based approach for the disk array subsystem.

We assume that meta data for video streams are stored on a separate local disk

in order to guarantee the large bandwidth of disk array subsystem. On the other

hand, the network subsystem may be another performance bottleneck of the video

server, this problem is not considered throughout the thesis assuming that the

network subsystem provides large bandwidth enough to support the transmission

of video streams.

24

The major mission of video servers is to convey data through I/O path: disk to

network. Hence, the CPU utilization is not so high. Although CPU controls disk

arrays, the tasks include distributing client requests to disks, scheduling requests

on each disk queue, issuing commands to SCSI adapter, and sending the retrieved

data to clients via network subsystem. So, we can find that CPU does not cause

the performance bottleneck in video servers. In addition, since the bandwidth of

system bus is far larger than that of SCSI bus, we conclude that the performance

bottleneck of video servers occurs in the disk subsystem [Cho94].

Disk arrays provide large bandwidth by activating multiple disks concurrently

or in parallel. Multiple disks in a disk array are connected to the system through a

SCSI bus which may cause the performance bottleneck. The trends of SCSI disk

and bus technologies show that the bandwidth of SCSI bus can support four disks

analytically without any performance bottleneck in the bus1. So, we consider only

up to four disks in a SCSI bus. On the other hand, although a hardware-based disk

array controller may be used, we take the software-based approach as mentioned

earlier because it is flexible to implement disk arrays suitable for video servers.

3.2 Performance analysis of disk arrays

There exist two straightforward strategies which explore different aspects of paral-

lelism and concurrency offered by striping data across disks [Keet93]. The degree

of concurrency is defined as the number of outstanding request at one time and the

1The current transfer bandwidth of a SCSI disk is about 10MB/s while the wide SCSI bus
supports 40MB/s.

25

parallelism describes the number of disks that service a single request. Among dif-

ferent levels of RAID (Redundant Arrays of Inexpensive Disks), RAID3 exploits

the parallelism while RAID4 and RAID5 do the concurrency. We consider only

data striping: redundancy such as parity for on-line recovery is beyond the scope

of the thesis and is not described further. So, we call the ‘parallelism’ scheme and

‘concurrency’ scheme, AID3 and AID5, respectively.

In AID3, a request is serviced on all the disks while all the disks in the array

are synchronized. In video servers, however, since client requests arrives period-

ically, the synchronization unit in AID3 may be the period of client requests. So,

AID3 can be implemented by software-based approach without difficulty. On the

contrary, in AID5, a request is serviced on a single disk but multiple requests may

be serviced across disks concurrently. Therefore, scheduling support is required

to evenly distribute requests across disks.

The major performance metric of video servers is the number of clients that

can be serviced simultaneously as mentioned in Chapter 1. Since we identified

that the performance bottleneck of video servers is the disk subsystem in Section

3.1, the number of clients that can be serviced simultaneously depends upon the

performance of disk subsystem.

Before analyzing the performance of disk subsystem, we first describe the

basic behavior of video servers. Let us assume that clienti (� � i � N) requests

a video streamVi. Then, the server must retrieveN disk blocks and transmit them

to clients periodically. The period is calledround. The round lengthTround is

determined by the playback rate ofVi (� � i � N) and the disk block size. In

this chapter, we assume that the playback rate ofVi (� � i � N) is equal to each

26

other for convenience; so,Tround � Tplay, whereTplay denotes the playback time

of a disk block. This assumption is broken in the next chapter.

First, we analyze the performance of AID5 in terms of the number of clients

that can be serviced simultaneously in video servers. Video streams are divided

into striping units and are striped across disks. The size of client requests is the

same as the striping unit or one disk block. From the view point of each disk,

disk requests for a client arrive with the period ofd rounds in AID5, whered

denotes the number of disks in the array, because a request is serviced in a disk

and the next request is serviced in the adjacent disk, or in round-robin manner.

Thus, duringd rounds, totalN disk blocks must be retrieved in each disk. This

condition can be written by

Toverhead �N � BAID�

R
� d� TAID�

play � (3.1)

whereR denotes the transfer rate of a disk andB is the disk block size.Toverhead

represents the time for the disk head to arrive at the desired position including

seek time and rotational latency. If the disk block size is determined by the unit of

track, or given by multiple tracks, the rotational latency can be ignored due to the

track buffer in disk drives. The SCAN disk scheduling minimizesToverhead be-

cause all the requests can be serviced while the disk head moves to one direction.

Since recent disks reveal non-linear seek time for the seek distance, however, it is

difficult to estimate the exact value ofToverhead. From Eq. (3.1), we obtain

N � TAID�
play � d� Toverhead

BAID��R
� (3.2)

Whend � 	, B � ��KB, R �
�	MB�s, andTplay � ��
ms2, for example, the

shaded region in Figure 3.2 represents the feasible values forN andToverhead. In

2We assume 1.5Mbps MPEG-1 video streams.

27

768

51200

766.8

76

N

Toverhead

Toverhead � N � Tavg

Figure 3.2: Relationship betweenToverhead andN

Figure 3.2, assuming that the average overhead for one disk request is 10ms and

thusToverhead � ��N , we getN � �� whenToverhead � ����
ms. If we assume

that the average overhead for a disk request is 15ms,N � �� is obtained while

Toverhead � ����
ms.

On the other hand, in AID3, since a disk block for client request is distributed

across all the disks, the striping unit is��d of a block, orBAID�

d
. Then, from the

viewpoint of each disk as similar in AID5, the server must retrieveN striping

units for each round yielding:

Toverhead �
N

d
� BAID�

R
� TAID�

play � (3.3)

In Eq. (3.1) and Eq. (3.3), if we let the striping unit sizes of two schemes be the

same, we obtainBAID� � d � BAID� andTAID�
play � d � TAID�

play . Applying them to

Eq. (3.3), Eq. (3.1) becomes to be equivalent to Eq. (3.3). This indicates that the

performance of two schemes are equal to each other when the striping unit sizes

are given by the same value. In that case, however, since the block size of AID3

28

is d times larger than that of AID5, the buffer requirement of AID3 is much larger

than that of AID5. On the condition that the disk block sizes of two schemes

are equal, AID5 performs better than AID3. As compared with Figure 3.2, for

instance, AID3 can provide services for only 19 concurrent clients assuming the

average overhead for a disk request is 10ms.

The simple analysis given above reveals that the disk seek time and rotational

latency, orToverhead greatly affect on the performance of disk arrays. In order

to reduce the left-term of Eq. (3.1) and Eq. (3.3), we should employ SCAN

disk scheduling algorithm and the disk block sizes should be large enough. As

mentioned earlier, the striping unit should be multiple tracks, so that the rotational

latency is ignored due to the track buffer of disk drives. The larger the disk block

size, the larger the buffer requirement. So, the cost-effective disk block size should

be determined. We explore components which affect on the performance of video

servers through simulation in the next section.

3.3 Simulation studies

Figure 3.3 depicts the simulation model. During each round with the period of

Tround, totalN disk block requests are generated forN clients and they are dis-

tributed across disks according to the striping policies. Each disk scheduler re-

orders the requests by SCAN disk scheduling algorithm and services them. All

the requests should be serviced during a round ofTround. Simulation proceeds by

increasingN and determines the maximum number of streams that can be ser-

viced simultaneously.Tround is calculated by the disk block size assuming the

29

Request
Distributor

N disk block
requests

Request
Generator

Disk Scheduler Buffer

deadline
check

Transmit

Tround

Figure 3.3: Simulation model

video stream rate is given by 1.5Mbps. For the purpose of modeling the behav-

ior of disk drives exactly, we employ a study of Ruemmler and Wilkes [Ruem94]

which analyzes the characteristics of modern disk drives. We choose HP 97560

disk drives for the simulation of which the performance parameters are given in

Table 3.1.

The major concern is how the disk block size and striping techniques affect

the performance of video servers. We first compare the performance of striping

techniques: AID3, AID5, and the hybrid technique of AID3 and AID5. We also

consider ‘no striping’ scheme in which data are not striped across disks but are

stored in disks sequentially. Figure 3.4 shows the results. As analyzed in Section

3.2, the performances of AID3, AID5, and the hybrid scheme do not reveal large

differences but the absolute values of the maximum number of streams that can

be serviced simultaneously show some differences with those of the analysis per-

formed in the previous section. This occurs because we underestimateToverhead

and include additional overhead such as controller overhead and head switch time

in the simulation.

30

Table 3.1: Disk parameters used in the simulation (HP 97560)

Capacity 1.3 GB
Cylinders 1,962
Tracks per cylinder 19
Track size 36 KB
Revolution speed 4,002 RPM
Seek time ��
	 � ��	��

p
d �� � d � �
��

��� � ����
d ��
� � d � ���
�
Controller overhead 2.2 ms
Head switch time 1.6 ms

18 36 72 108 144
0

10

20

30

40

50

Striping unit (KB)

N
um

be
r

of
 s

tr
ea

m
s

AID5
Hybrid
AID3
No striping (random)
No striping (balanced)

Figure 3.4: Comparison of striping policies

31

Although AID3, AID5, and the hybrid striping techniques show similar per-

formance when the striping unit is equal to each other, the buffer requirement of

AID5 is far smaller than those of the other schemes, because the disk block size

of AID5 is the smallest. In addition, the large disk block leads to the largeTround

and thus results in the large start-up latency for the service. We can conclude that

AID5 is suitable for the storage architecture of video servers.

Figure 3.4 also reveals that the number of streams increases as the striping

unit size increases. It is noteworthy that allocating one more track for striping unit

increases the performance significantly. This is because the large striping unit

reduces the portion ofToverhead in Eq. (3.1) and Eq. (3.3). However, when the

striping unit is greater than three tracks, the performance gain reduces. Therefore,

it can be concluded that the best choice for the striping unit would be 1 or 2 tracks.

In Figure 3.5, the effects of the number of disks are presented when AID5 is

applied. Figure 3.5 reveals the linear increase in the number of streams as the

number of disks increases. However, as mentioned earlier, 5 or more disks may

cause a bottleneck in SCSI bus.

Finally, we explore the placement policy in a disk. As compared with the ran-

dom allocation scheme, the contiguous allocation scheme is simple to implement

and requires no meta data for video streams but may cause the fragmentation in

disk storage space when video streams are created, edited, and deleted frequently.

Figure 3.6 compares the performance of two schemes. The contiguous allocation

scheme performs better slightly. In VOD application where read operations are

dominant and thus no fragmentation occurs, the contiguous allocation scheme is

competitive approach for the placement policy.

32

18 36 72 108 144
0

10

20

30

40

50

Striping unit (KB)

N
um

be
r

of
 s

tr
ea

m
s

1 disk
2 disks
4 disks

Figure 3.5: Effect of the number of disks (AID5,s � ��KB)

18 36 72 108 144
0

10

20

30

40

50

Striping unit (KB)

N
um

be
r

of
 s

tr
ea

m
s

Contiguous
Random

Figure 3.6: Comparison of placement schemes (AID5,s � ��KB)

33

Table 3.2: The proposed storage architecture for a single server

Number of disks 4
Disk scheduling SCAN
Disk striping AID5
Striping unit � �
 tracks
Placement policy contiguous

In summary, we suggest a storage architecture for video servers equipped with

disk arrays in Table 3.2 from the analysis and simulation conducted in Section

3.2 and Section 3.3. We implement the proposed storage architecture in the next

section.

3.4 Implementation of a disk array manager: DAman

On the basis of the studies conducted in the previous sections, we implement

a disk array for video servers and measure its performance in this section. As

mentioned in Section 3.1, Figure 3.1 depicts the hardware platform of the server.

The server is a Pentium 100MHz PC equipped with a AHA-1540CP SCSI adapter

and four Quantum 850MB SCSI disks. We choose the QNX real-time microkernel

operating systems [QNX93] for the software platform and implement a disk array

manager, which we name DAman3, as a server process on QNX. Since QNX is

a microkernel OS, device drivers run as server processes4. So, it is convenient to

develop and debug device drivers. In addition, QNX supports real-time facilities

3Source codes for DAman can be accessed athttp://cselab.snu.ac.kr/�cjs/
proj/DAman/DAman.html.

4The priorities of device drivers is higher than those of application programs.

34

File System Manager
 DAopen DAclose DAread DAwrite
 DAseek DArm DAfsck DAmkfs
 DAls DAmv DAfree DAmalloc
 DAlbsize DArequest

Striping Manager
No striping AID3 AID5

StripRequest()

SCSI Manager
Management of SCSI adapters and disks

SCSIRequest()

AHAcommand()

User request
DAman

Interrupt
Handler

Interrupt
Manager

QNX real-time microkernel OS

H/W (SCSI adapters and disks)

DAman
library
Stub

Applicaiton
Program

Data
Path

Figure 3.7: Overall architecture of DAman

including prioritized message and process scheduling. Consequently, we believe

that QNX is an appropriate OS for DAman and video servers.

3.4.1 Overall architecture

DAman consists of four functional managers: file system manager, striping man-

ager, SCSI manager, and interrupt manager, as shown in Figure 3.7. By imple-

menting functional managers, it is easy to add, update, and delete each function.

However, the functional managers are not implemented as independent processes,

because QNX does not support thread facilities. If the managers are implemented

as independent processes, large overhead of IPC may lead to low performance.

DAman is invoked from messages given by applications or by interrupt handler.

35

super block
directory block
bitmap block
data block

Figure 3.8: DAman file system structure

Since the messages of interrupt handler have higher priorities than those of ap-

plications, the interrupt manager has the highest priority among the functional

managers.

The control flow between each managers is also depicted in Figure 3.7. Ap-

plication programs are linked with DAman libraries and the library stub sends

messages to DAman for data service and receives results. The DAman library

stub packs a message for the given system call and send it to DAman. The file

system manager processes the message and hand it over to the striping manager

by StripRequest() function call. Then, according to the striping policy, the

striping manager packs a SCSI request and callSCSIRequest(). the SCSI

manager controls SCSI devices including adapters and disks throughAHACom-

mand(). When a SCSI request service is done, SCSI adapters notify it to CPU

by interrupt. The interrupt handler invokes DAman for the interrupt processing.

DAman provides a separate file system from QNX of which the structure is

given in Figure 3.8. Since DAman is designed for video servers, DAman file sys-

tem is optimized on continuous read operations. That is, it has no index structure

such asinode in UNIX while each block of a video file is placed contiguously.

So, all the blocks can be accessed directly. In Figure 3.8, the super block con-

tains hardware information including the number of SCSI adapters, the number of

36

int da open(char *file name, int flag);
int da close(int handle);
int da read(int handle, char far *buf, int max size);
int da write(int handle, char far *buf, int size);
int da request(int n, Req Blk t *req blk);
int da rewind(int handle);
int da mkfs(int logical block size);
int da fsck(void);
int da lbsize(void);
int da ls(DirEnt t *dir, char *name);
int da rm(char *file name);
int da mv(char *source, char *dest);
char far * da malloc(int size);
int da free(char far *pointer);
char * far2near(char far *pointer, int size);
int da errmsg(void);

Figure 3.9: Run-time libraries for DAman

SCSI disks, IRQ number, base address for adapters, etc. It also has the striping

type. DAman initializes itself with the information stored in the super block. The

directory block stores directory entries for each video file such as file name, file

size, created time, and owner. The bitmap block indicates whether each block is

allocated or not. It is used on compaction and file system check operation.

The file system manager handles the logical address space on file systems

while the mapping from logical block to physical block is performed by the strip-

ing manager. The striping manager supports the following three policies: no strip-

ing, AID3, and AID5. The SCSI manager and the interrupt manager control the

SCSI adapters and disks. The SCSI manager packs SCSI commands from the

information given by the striping manager and send them to the adapter. The in-

terrupt manager is invoked by proxy messages which are delivered from interrupt

handler when SCSI commands are done.

37

Table 3.3: Utilities for DAman

Command Description
cp2da copy a file to DAman
cpda2 copy a file from DAman
mkdafs make a DAman file system
dals list directory entries
darm remove a file
damv move (rename) a file
dafsck check DAman file system

As mentioned earlier, the disk blocks can be accessed directly without index

structure and are placed contiguously. This is because DAman is designed for

video servers in which read operations are dominant. However, when video files

are deleted, inserted, and updated frequently, the fragmentation in file system ad-

dress space may occur [Vin95]. We believe that this problem does not occur in

video servers and can be solved simply by replacing only the file system manager

with a new one. Another optimization for read operations is that DAman has no

buffer cache. In other words, data are transferred to user address space directly

through DMA mechanism. Hence, there is no data copying overhead from kernel

address space to user address space which takes large portion in read operations

of video servers [Coul94]. The performance gain of buffer cache in video servers

is not so large unless multiple clients arrive within a short time interval [Dan95].

DAman supports 14 system calls as shown in Figure 3.7. Based on them,

16 run-time libraries are given for applications in Figure 3.9. We also provide

some utilies for the maintenance of DAman in Table 3.3. When the fragmentation

problem in DAman is severe, we can eliminate it bydafsck command. Finally,

we develop a video-on-demand system by integrating DAman with a video server

38

N disk block
requests

Request
Generator

DAman

No striping

AID3

AID5

Buffer deadline
check

Transmit

Tround

Figure 3.10: Experiment model

given in [Ahn95]. The prototype demonstrates that DAman well supports multiple

concurrent streams5.

3.4.2 Empirical evaluation

In this subsection, we empirically evaluate the performance of DAman. Figure

3.10 depicts the experimental model similar to that of the simulation study given

in Section 3.3. A request generator is an application program linked with DAman

libraries. It generatesN disk requests periodically with the period ofTround.

DAman stores 20 video files each of which has 150MB size. We assume that

the stream rate of a video stream is 160KB/s6. SinceTround is calculated from

the block size and the stream rate of video streams,Tround is given by 0.1 second

when the disk block size is 16KB. We derive the number of streams that can be

serviced simultaneously by measuring the number of disk blocks which can be re-

trieved within a round, orTround. Meanwhile, we measure the elapsed time using

5Due to the lack of hardware MPEG-1 decoders, we have ascertained two concurrent streams
to be played back hiccup-free in the prototype. It is expected, however, that DAman can support
as many as concurrent streams presented in the next subsection through simulation.

6� 1.5Mbps.

39

Table 3.4: Execution time of DAman (�s)

Striping policy No striping AID3 AID5
Request to DAman 132.7 130.8 130.0

File system manager 23.3 22.7 25.6
Striping manager 14.9 26.3 15.1
SCSI manager 17.6 25.7 18.7

Interrupt manager 109.2 407.8 107.2

a timer board which has 0.1�s granularity.

First, Table 3.4 represents the execution time of each functional manager of

DAman. The execution time is much less than the disk access time which is tens of

milli-seconds. We can find from Table 3.4 that the time for request to DAman and

the execution time of the interrupt manager are relatively large. This is because

some messages are passed between an application to DAman, and between the

interrupt handler to DAman, respectively. It is well known that message passing

leads to large overhead in micro-kernel operating systems.

As for the comparison of striping policies, while ‘no striping’ and AID5 reveal

the similar execution time to each other, the execution times of the striping man-

ager, the SCSI manager, and the interrupt manager in AID3 are larger than those

in ‘no striping’ and AID5. This occurs because a logical block service in AID3

is divided into four requests to each disk which should be handled in the striping

manager, the SCSI manager, and the interrupt manager. The total service time

for a disk access in AID3 is expected to be far larger than those in ‘no striping’

and AID5 because: (1) the service time depends on the largest one among all the

disks, and (2) a logical block is divided into multiple physical disk blocks yielding

relatively large portion of disk seek time.

40

16 32 48 80 160
0

2

4

6

8

10

12

14

Logical block size (KB)

N
um

be
r

of
 s

tr
ea

m
s

No striping
AID3
AID5

Figure 3.11: Comparison of striping policies (4 disks)

16 32 48 80 160
0

2

4

6

8

10

12

14

Logical block size (KB)

N
um

be
r

of
 s

tr
ea

m
s

No striping
AID3
AID5

Figure 3.12: Comparison of striping policies (2 disks)

41

Figure 3.11 reflects the analysis described above. Given a logical block size,

AID3 provides the smallest number of concurrent streams. One more thing to

point out in Figure 3.12 is that the number of streams increases as the logical block

size increases. This is a straightforward result taking disk seek time overhead into

account. However, the increament ratio decreases when the logical block size is

greater than two tracks7. This coincides with the simulation studies in Section 3.3.

The similar results are derived in Figure 3.12 when only two disks comprise the

disk array.

Observe in Figure 3.11 and Figure 3.12 that the performance of ‘no striping’

scheme is equivalent to AID5. This occurs because we let the disk workload be

evenly distributed across disks, which may not occur in real world. AID5 itself

evenly distributes disk workload across disks. In addition, Figure 3.13 reveals

that the average service time of AID5 is less than that of ‘no striping’ scheme.

Consequently, AID5 is the most promising architecture for video servers, which

also coincides with the simulation studies.

Figure 3.14 shows the effect of the number of disks in the array. Although the

number of streams increases as the number of disks increases, the linear increase

is not obtained due to the contention on system bus and/or SCSI bus, which is not

reflected on the simulation studies. In addition, the actual number of streams that

can be serviced in DAman shows large differences from that of simulation studies.

This indicates that: (1) the actual disk access time including seek time, rotational

latency, and transfer time is greater than the analytic value, and (2) the other over-

head of DAman takes large portion of the total service time. Nevertheless, the

7The track size of our disk is 32KB.

42

16 32 48 80 160
0

200

400

600

800

1000

Logical block size (KB)

S
er

vi
ce

 ti
m

e
(m

s)

No striping
AID5

Figure 3.13: Comparison between no striping and AID5 (4 disks)

16 32 48 80 160
0

2

4

6

8

10

12

14

Logical block size (KB)

N
um

be
r

of
 s

tr
ea

m
s

1 disk
2 disks
4 disks

Figure 3.14: Effect of the number of disks (AID5)

43

shapes of the graphs (i.e. the tendency of the effects of parameters on perfor-

mance) are similar; the proposed storage architecture in Table 3.2 obtained by the

simulation studies in Section 3.3 is validated through the performance evaluation

of DAman.

44

Chapter 4

Storage and retrieval in a large-scale

server

The single server approach in Chapter 3 has limitations in scalability [Lee98]. For

the purpose of providing video services for the public over high-speed network, a

video server should store thousands of video streams and serve tens of thousands

of concurrent clients. Assuming that MPEG-1 video streams require a playback

rate of 1.5Mbps, a 100-minute long video requires about 1.1GB storage, and two

thousand videos require a capacity of 2.2TB, or 220 disks of 10GB. If we ex-

ploit the perfect parallelism or concurrency of disks in such a system and assume

that the effective bandwidth of a disk is 10MB/s, 11733 clients can be serviced

simultaneously. Such a large-scale server should be designed and implemented

based on parallel video server architecture. The parallel server consists of storage

nodes which store and provide video data and network nodes which deliver data

to clients in a timely fashion. The storage and network functions may reside in

45

a node or be isolated physically in different nodes. The storage node should be

equipped with high-performance storage subsystems such as disk arrays. Com-

munication between nodes also demands high bandwidth interconnections.

In this chapter we address the problems in designing a large-scale video server

which consists of a large number of nodes connected by a high performance in-

terconnection network. The design problems narrow down to how to cluster such

nodes into parallel servers and how to distribute and schedule video streams in a

parallel server.

4.1 System model

As similar to the single server equipped with disk arrays in Chapter 3, each video

stream can be divided into logical blocks and then distributed among multiple

storage nodes, which referred to asdata-stripingin this chapter. Data-striping

implicitly achieves higher disk bandwidth and load balancing [Tewa96a]. In a

distributed server, however, a video stream may be stored and serviced in a single

storage node [Heyb96], which referred to asno-striping.

Although the data-striping technique has the aforementioned advantages, it

has the following disadvantages: First, a distributed scheduling among storage

nodes is required. This imposes clock synchronization problems among all nodes

in a parallel server. Second, service latency is relatively larger than the no-striping

case on account of scheduling problems. Service latency means the time elapsed

since a request is made to initiate a new stream until the stream is serviced. Third,

data-striping lacks scalability. If disks or storage nodes are added to a parallel

46

Server Cluster 1

Server Cluster M

Server Cluster 2 Access
Network

ClientWAN

Service Gateway

Figure 4.1: Configuration of a large-scale video server

server, the whole data must be redistributed among storage nodes. Finally, the

popularity of video streams cannot be considered. Since there is no improvement

in performance when more than one copy of the same video is placed on a disk

[Litt93], replicating popular videos in a parallel server fails to increase the number

of clients that can be serviced simultaneously. Hence, a hybrid technique of data-

striping and no-striping is required.

For a given set of nodes, we divide it into server clusters as shown in Figure

4.1. Considering the advantages of data-striping, video streams are striped across

all the storage nodes in a server cluster while a server cluster has the parallel server

architecture1. Video streams are allocated and replicated among server clusters

with respect to their popularity. Server clusters provide video streams for clients

independently. A series of video streams stored in server clusters is serviced at a

service gateway. Considering the load balance among server clusters, the gateway

provides clients with the address of the server cluster that stores the requested

1In Chapter 4, the terms server cluster and parallel server are used interchangeably.

47

storage
node 0

storage
node d-1

network
node 0

network
node d-1

interconnection
network

Figure 4.2: Architecture of a parallel server (server cluster)

video. For a given set of nodes, the appropriate number of server clusters or

the number of nodes within a server cluster (the size of a server cluster) will be

described in Section 4.3. If the size of a server cluster equals the number of nodes

in the server, video streams are striped across the server, that is, data-striping

occurs in the server. On the other hand, if the size of a server cluster is equal to

one, no-striping scheme is employed in the server.

Figure 4.2 shows the architecture of a server cluster (parallel server) which

consists ofstoragenodesandnetwork nodes. Storage nodes are responsible for

storing video data and delivering the required bandwidth to this data while net-

work nodes are for delivering data blocks from storage nodes to clients. Each

request stream would originate at one of the network nodes in the server cluster.

This network node should deliver the video stream without violating the continu-

ity requirement of the stream. Although storage and network functions can reside

on the same node by connecting nodei to inputi and outputi of the network, we

will treat storage nodes and network nodes separately in the rest of this chapter.

We consider multistage interconnection networks (MIN) for interconnecting

48

storage nodes and network nodes. There exist static connection networks and

dynamic connection networks for the interconnection networks. Static networks

such as mesh, torus, and hypercube networks are suitable for building computer

systems where the communication patterns are predictable or implementable with

static connections [Hwan93]. While static networks are used for special-purpose

applications such as scientific parallel computations, for multipurpose or general-

purpose applications, we need to use dynamic connection networks which can

implement all communication patterns based on program demands.

Dynamic connection networks include backplane bus systems, crossbar switch

networks, and multistage networks. Bus systems and crossbar switch networks

are limited to small or medium-size systems due to bus bandwidth and large cost,

respectively, while multistage interconnection networks can be extended to larger

systems [Hwan93]. We consider Omega interconnection network [Bern93] as the

communication network between storage nodes and network nodes. However,

some blocking networks are equivalent after graph transformations, so that the

communication scheduling algorithm proposed in Section 4.2.3 is applicable to

other multistage interconnection networks which are topologically equivalent to

Omega network [Wu80] such as Baseline and Banyan networks.

4.2 Storage and retrieval in a parallel server

The parallel server architecture imposes the following problems: data distribu-

tion and retrieval scheduling at storage nodes, communication scheduling between

storage nodes and network nodes, and admission control for deterministic service

49

guarantee. The following subsections focus on these issues in a server cluster, that

is, a parallel server.

4.2.1 Data placement

Data placement refers to distributing the blocks of video streams across storage

nodes. This involves the order in which the blocks are striped across the stor-

age nodes. Data organization determines bandwidth available to a video, load

balance across storage nodes, and communication patterns. Since we verified in

Chapter 3 that AID5 is the most appropriate storage architecture for video servers

although the analysis proceeds in the single server approach, we consider only a

data striping technique in which successive blocks are interleaved across storage

nodes. Successive blocks of a video stream may be allocated to storage nodes

either using a round-robin or a random placement algorithm [Tewa96a].

With random placement, successive blocks are placed on storage nodes using

a random permutation. Although the random placement technique adapts to in-

cremental growth, it may require more meta data and cause the load of storage

nodes to be unbalanced. On the other hand, the round-robin placement scheme

places successive blocks of a video stream on adjacent storage nodes and allows

the streams to access storage nodes deterministically thus generating deterministic

communication patterns between storage nodes and network nodes. However, this

could cause large service latency if start blocks of video streams are placed at the

same storage nodes. Distributing the starting points of video streams across stor-

age nodes decreases the average service latency. Figure 4.3 illustrates an example

of data placement, whereA�� denotes the 3rd block of streamA.

50

node 0 node 1 node 2 node 3
A�� A�� A�
 A��
A�	 A�� A�� A��
� � � � � � � � � � � �
B�� B�� B�� B�

B�� B�	 B�� B��
� � � � � � � � � � � �
C�
 C�� C�� C��
C�� C�� C�	 C��
� � � � � � � � � � � �
D�� D�
 D�� D��
D�� D�� D�� D�	
� � � � � � � � � � � �

Figure 4.3: An example of data placement

We now analyze the worst case service latency. As an illustration, suppose

that three clients request video streamsA, B, andC respectively and that storage

nodes 0, 1, and 2 serve the first blocks ofA, B, andC, respectively, as shown

in Figure 4.3. After the playback timeTplay of a disk block, storage nodes 1, 2,

and 3 schedule the next block. If the fourth client requests video streamD at this

moment, the schedule for blockD�� will be delayed until storage node 3 is idle;

so the loads are balanced across the storage nodes. Hence, the scheduling penalty

is 3Tplay. Supposing there ared storage nodes (as is in Chapter 3), the worst case

service latency will be modeled as follows:

�d� ��Tplay � Tread��� � Tcomm � Tnet � Tmax
latency� (4.1)

whereTread�k� denotes the time to readk disk blocks,Tcomm is the time to deliver

a block from storage node to network node, andTnet is the time to deliver a block

to clients.

51

By rewriting Eq. (4.1), the number of nodes in a server may be bounded to

d � �Tmax
latency � Tplay � Tread���� Tcomm � Tnet��Tplay� (4.2)

4.2.2 Retrieval scheduling

The performance of video servers is limited by their relatively low disk bandwidth

as mentioned in Chapter 3. This section describes a scheduling technique that

fully utilizes the disk bandwidth of storage nodes while satisfying the continuity

requirement of video streams.

We first consider a process involved in serving a single client. A disk block

must be retrieved for the client everyTplay seconds. From the standpoint of a

storage node, it must retrieve a disk block everyd� Tplay seconds, whered is the

number of storage nodes. Thus, the retrieval of a disk block must be completed

within d� Tplay
2.

We now considerN client requests,r�, r�, � � �, rN . In each storage node,N

retrievals forr�, r�, � � �, rN constitutes a round. That is, in a storage node,b�j , b
�
j ,

� � �, bNj are retrieved in thejth round, wherebij denotes thejth disk block ofri in

the storage node. Each disk block,bij, must be retrieved within its deadline,d �
T i
play. The deadlines ofbij, � � i � N , will be met if the period of a roundTround

is given by the shortest playback time amongN disk blocks,d � T min
play , where

Tmin
play � min��i�N �T

i
play�. In order to serviceN clients without violating the

2In Chapter 3, we described more in detail.

52

round: ��� �
� ��� �	� ��� ��� ��� � � �
r� � b�� b�� b�� b�� b�� b�� b�� � � �
r� � b�� b�� b�� b�� � � �
r� � b�� b�� b�� � � �
r� � b�� b�� b�� b�� b�� � � �

time: � �
 � 	 � � � � �

Figure 4.4: A scenario of simple round scheduling in a storage node

continuity of streams, the following admission control criteria must be satisfied3.

Tread�N� � d� Tmin
play (4.3)

When clients access heterogeneous streams,T i
play’s of client requestri, � �

i � N , are different from each other with respect to the playback rate of video

streams. IfT �
play = T �

play = � � � = TN
play = Tplay then everyd � Tplay seconds, a

block for each client request is retrieved and consumed; thus not accumulated.

If T i
play � Tmin

play , however, data accumulation will occur forri. To avoid this

untoward effect, we opt to schedule the blocks to be retrieved in each round. We

call such a procedureround scheduling. Figure 4.4 illustrates a simple scenario

whered� T �
play � �, d� T �

play �
, d� T �
play � �, d� T �

play � ���.

As shown in this example,b��, b
�
�, b

�
�, b

�
� are retrieved in the first round;b�� andb��

in the second round. As only two blocks are retrieved in the second round, there

exists disk idle time. Hence, the client requests that have failed the admission

control can be serviced during the idle time. For instance, if we assume that four

clients can be simultaneously serviced or that four blocks can be retrieved in a

round, and ifr� with d � T �
play � ��� andr� with d � T �

play �
 arrive, then the

3Eq. (4.3) is a generalized form of Eq. (3.1) including heterogeneous streams.

53

round: ��� �
� ��� �	� ��� ��� ��� � � �
r� � b�� b�� b�� b�� b�� b�� b�� � � �
r� � b�� b�� b�� b�� � � �
r� � b�� b�� b�� � � �
r� � b�� b�� b�� b�� b�� � � �
r� � b�� b�� b�� b�� � � �
r� � b�� b�� b�� � � �

time: � �
 � 	 � � � � �

Figure 4.5: A scenario of efficient round scheduling in a storage node

admission control for these two requests will fail. Requestsr� andr�, however,

can be serviced during the disk idle time. Figure 4.5 shows a schedule for this

scenario. Further analysis of these cases results in the following theorem. Let

Q � fiji � ��
� � � � � index for client requestsg andki � Tmin
play �T

i
play.

Theorem 4.1 It is possible to service a new requestra even when the admission

control fails, if the following relationships hold:

X
i�Q

ki � � and a � Q� (4.4)

Proof: ki for ri is the number of blocks retrieved in a round andki � �. If there

existsQ such that
P

i�Q ki � � then the blocks forfriji � Qg can be retrieved.

That is, forri, i � Q, ki�kmin blocks are retrieved once every��kmin rounds,

wherekmin � mini�Q�ki�. When the values ofki�kmin is not an integer value, the

values are toggled betweendki�kmine andbki�kminc, so thatki�kmin blocks are

retrieved once every��kmin rounds on the average. Thusra can be serviced. �

54

8 16 32 64 128
0

200

400

600

800

1000

Number of disks

N
um

be
r

of
 c

lie
nt

s
No scheduling
Retrieval scheduling

Figure 4.6: Effect of the retrieval scheduling

Let us apply Theorem 4.1 tor� andr� of Figure 4.5. Sincek� � ��
, k� �

���, k� �
��, k� � ��
, there existQ� andQ� for r� andr�, respectively, such

thatQ� � f�� �g, Q� � f
� �g. Hencer� andr� are serviced every other round.

A block for r� and two blocks forr� are retrieved in three rounds, and these three

rounds are repeated.

In consequence, Eq. (4.3) and Eq. (4.4) can be integrated into the final ad-

mission control criteria. Figure 4.6 shows the effect of the proposed retrieval

scheduling algorithm quantitatively4. We can find from Figure 4.6 that integrating

Eq. (4.4) to the admission control criteria increases significantly the number of

clients that can be serviced simultaneously (about� � ��%).

4We assume the following parameters:Tseek max � ��msec,B � ��KB, R � �MB/sec,
T i
play �uniform (200,440)msec.

55

4.2.3 Communication scheduling

In the previous section, we described the guaranteed retrieval of disk blocks in

storage nodes. These blocks must also be transmitted to network nodes in a de-

terministic fashion over an interconnection network. For further discussion we

choose Omega network [Lawr75] as a candidate network in the parallel server.

This multistage interconnection network has a property that each data block to be

sent through the network involves a unique path between source and destination.

Thus, for a given set of blocks it may not be transmitted simultaneously because

some of the blocks may conflict with one another. To resolve such conflicts we

may need to partition a setS of conflicting data blocks intok subsets,S�, � � �, Sk,
such that each subset is conflict-free [Bern93].

First, we consider communication patterns in the server. The parallel server

distributes video streams across all storage nodes and proceeds in periodic rounds

at storage and network nodes. During a round, each storage node must transmit to

network nodesm data blocks prefetched in the previous round. While delivering

video data to network nodes,d storage nodes generatem � d (src, dest) pairs,

wheresrc anddest denote a source and a destination, respectively. In our envi-

ronment, source means storage node and destination does network node. Upon

clients’ arrival at network nodes, requests are evenly distributed and then sent to

storage nodes for service; so the amount of data blocks that a network node re-

ceives in return from storage nodes is the same as that of the other network nodes.

Therefore, inm� d (src, dest) pairs, each value ofsrc anddest occursm times

exactly whereas the value ofsrc anddest ranges from� to d� �.

We now describe the communication scheduling algorithm. A round is divided

56

into l� d slots, and a data block is transmitted within a slot. For source nodei, m

data blocks are scheduled as follows:

�i� i�� �i� i� �� � � � � �i� d� ��� �i� ��� � � � � �i� i� ��� � � �

It can be shown that all data blocks are transmitted during a round without conflict

based on the following theorem.

Theorem 4.2 For a setS of d� d (src, dest), � � src � d, � � dest � d, pairs

of communication paths,S can be partitioned into the followingSk’s which are

conflict-free5:

Sk � f�i� �i� k�d� j � � i � dg� � � k � d

Proof: S can be partitioned intoSk’s and it can be obtained from [Lawr75] that

Sk, � � k � d, is conflict-free. Therefore, the theorem holds. �

To our knowledge, there exist only one study on communication scheduling

between storage nodes and network nodes for video servers. Reddy [Redd95]

addresses the issue of scheduling communication over the multiprocessor switch

for the playback of video streams. He argues that the proposed solution including

disk placement makes video scheduling very simple: If the first block of the video

is schedulable without network contention, the solution guarantees that there will

be no network contention during the entire duration of video playback. Compared

with the solution, our communication scheduling is much simpler: We need not

5In the following equation, We definey � �x�d if x � a � d � y, � � y � d, for all integer
values.

57

retrieval
scheduling

communication
scheduling

Round i-2 Round i-1 Round i
buffers

Storage node Network node
Client

Figure 4.7: Data flow in a parallel server

check if even the first block of the video is conflict-free because the slot-based

schedule always guarantees freedom from conflict. Furthermore, the proposed

communication scheduling is designed for heterogeneous streams of which the

playback rates are different from each other, while the solution in [Redd95] is not.

In general, considering that the link bandwidth of interconnection networks

is larger than that of disks, a storage node can transmit more thanm blocks to

network nodes, orld � m. When ld � m, the admission control criteria we

described in Section 4.2.2 can be applied. Ifld � m, communication network

becomes a bottleneck in the parallel server, and a new client who demands that a

storage node retrieve more thanld blocks should be rejected. Whenm equalsld,

the utilization of all links in the network reaches����.

Since one of the major objectives of designing video servers suggests that they

service as many clients as possible, sufficiently large buffers have been assumed

for the scheduling algorithms. We now observe the buffer requirement of parallel

server. A data flow in parallel server is depicted in Figure 4.7. Since the schedules

generated by disk scheduling and communication scheduling are different from

each other, we employ the double buffer scheme at both storage node and network

58

a set of nodes
server
cluster

server
cluster

server
cluster

how to cluster?

video streams
distribution

replication

Figure 4.8: Problem description on the configuration of a large-scale server

node. For this reason 4 buffers per client are required in the parallel server for

deterministic service guarantees. The effective management of shared buffers,

however, will decrease buffer requirements.

4.3 Configuration of a large-scale server

We now examine the configuration of a large-scale video server for given nodes.

Figure 4.8 depicts the given problem. When a large number of storage nodes are

given, we intend to find the optimal configuration of the large-scale video server

through a simulation study. The simulation model is based on the parameters

listed in Table 4.1 that are considered suitable for the proposed large-scale server:

For 640 storage nodes given, data striping across all the 640 storage nodes causes

several problems, as described in Section 4.1. Especially, if we assume the block

size to be 256KB6, service latency will be larger than 300 seconds from Eq. (4.1).

6In Chapter 3, we encouraged one or two tracks (� �
�KB) for the disk block size. It is based
on the single server architecture, however, in which a disk block is striped across single disks. In
the parallel server architecture, since each storage node is equipped with high-performance storage

59

Table 4.1: Parameters used in the simulation

Number of storage nodes 640
Number of stored video streams 2,000
Stream rate of a video stream 0.5 MBps
Length of a video stream 80� 120 min.
Block size 256 KB
Disk bandwidth of storage node 20 MB/s
Link bandwidth of network 20 MB/s

Hence, we need to group storage nodes into server clusters.

While Table 4.1 represents the parameters used in the analysis, performance

analysis is based on a set of various alternatives for server configuration as listed

in Table 4.2. By capacity of a server cluster in Table 4.2 we mean the number

of clients that can be serviced simultaneously in a server cluster and by service

latency the value in the worst case. In average case, the value is much smaller. All

the alternatives in Table 4.2 can service 25,600 concurrent clients when the loads

are perfectly balanced across server clusters.

On the basis of video store rental patterns, it is known that access to video

streams in the server will be highly localized, with a small number of videos re-

ceiving most of the accesses [Cher95]. According to Zipf’s Law [Cher95] the

probability of choosing thenth most popular one fromM videos isC�n, where

C � ���� � ��
 � ��� � � � � � ��M�. Thus, replicating popular video streams

in server clusters can keep the load of server clusters balanced. In this experi-

ment we allocate 1,000 video streams to server clusters in the round-robin manner

subsystem, a larger block leads to its high performance.

60

Table 4.2: The alternatives in the configuration

Number of server clusters 5 10 20 40 80
Number of storage nodes 128 64 32 16 8
Capacity of a server cluster5,120 2,560 1,280 640 320
Service latency (sec) 64 32 16 8 4

according to their ranking and replicate top ranking videos in all the server clus-

ters. For example, when there are 10 server clusters, each server cluster has 100

unreplicated videos and the top 100 replicated video streams.

First, we carry out the simulation under the worst case assumption that 25,600

clients request concurrently. Video requests are localized according to the Zipf’s

distribution. Simulation results are given in Figure 4.9 and Figure 4.10. The

analysis of the graphs results in the following assertions: (1) Replicating popular

videos performs better. It is possible to service 50 to 250 more clients. (2) Until

the number of server clusters becomes 20, the average utilization7 of server clus-

ters is close to����. (3) When there are large numbers of server clusters, there

exist hot spots among server clusters, that is, server clusters which client requests

center around.

Second, we simulate the actual video service with replication. It is assumed

that clients arrive at the server according to a Poisson distribution with mean inter-

arrival time,���, and that the running time of each video is uniformly distributed

between 80 and 120 minutes. Figure 4.11 shows similar results to Figure 4.9

and Figure 4.10. When the load becomes smaller in Figure 4.11, the average uti-

lization of server clusters decreases. This is because there exist hot spots among

7# of clients being serviced/ # of clients can be serviced

61

5 10 20 40 80
0

100

200

300

400

500

600

Number of server clusters

N
um

be
r

of
 c

lie
nt

s
no

t s
er

vi
ce

d

No replication
Replication

Figure 4.9: Number of clients not serviced (worst case)

5 10 20 40 80
95

96

97

98

99

100

Number of server clusters

A
vg

. u
til

iz
at

io
n

of
 s

er
ve

r
cl

us
te

rs
 (

%
)

No replication
Replication

Figure 4.10: Average utilization of server clusters (worst case)

62

1 2 3 4 5
95

96

97

98

99

100

Mean interarrival time (sec)

A
vg

. u
til

iz
at

io
n

of
 s

er
ve

r
cl

us
te

rs
 (

%
)

 5 Server clusters
10 Server clusters
20 Server clusters
40 Server clusters
80 Server clusters

Figure 4.11: Average utilization of server clusters (average case)

server clusters whereas the other server clusters (non-hot spots) are under-utilized.

In Figure 4.10, the larger the number of server clusters is, the longer the average

waiting time8 becomes. It also results from hot spots where the waiting time is

longer. In addition, since the running time of videos is relatively long, the average

waiting time under heavy load (��� � ��
) is too long as shown in Figure 4.10.

In summary, given a large number of nodes, clients experience relatively large

service latency when the number of server clusters is small, that is, the size of a

server cluster is large. On the other hand, when the number of server clusters is

large, client requests are not balanced among server clusters, that is, there exist

hot spots, even though popular videos are replicated. Consequently, the tradeoff

of large versus small clusters provides a basis for the design of the most effective

server configuration. As to the size of a server cluster, it can be determined based

on the analysis of tradeoff between the utilization and service latency. In the

8The waiting time includes only queueing delay here.

63

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

Mean interarrival time (sec)

A
vg

. w
ai

tin
g

tim
e

(s
ec

) 5 Server clusters
10 Server clusters
20 Server clusters
40 Server clusters
80 Server clusters

Figure 4.12: Average waiting time (average case)

example given above, the simulation reveals that the most appropriate size of a

server cluster is 32 storage nodes, since the average utilization of server clusters

is close to 100% while the service latency is relatively small. This value is feasible

by current technologies.

4.4 Queueing analysis of a large-scale server

Section 4.2 described the architecture, data placement, retrieval and communica-

tion scheduling in each server cluster (parallel server) and we suggested how to

cluster a large number of storage nodes into parallel servers in Section 4.3. Then

a big picture of large-scale video server can be re-depicted as shown in Figure 4.1.

Each server cluster in Figure 4.1 provides individual services for each client. This

section propose a queueing model of the large-scale video server with a parallel

64

server being an independent service entity and analyze its performance.

4.4.1 Queueing model

As mentioned above, Figure 4.1 represents the system which we intend to model.

A large-scale video server in Figure 4.1 can be modeled as an open queueing net-

work model in Figure 4.13. The queueing network consists ofM �
 queues (M

server clusters and access network input/output) andN input processes. The pro-

posed model has two assumptions for easy calculation. First, the packet request

pattern of clientCi is a Poisson process with parameter�i (� � i � N). Variable

bit rate streams such as MPEG are modeled as Poisson processes in the literature

[Tewa96a]. Second, the service time in each queue has exponential distribution.

Then all the queues in the network are M/M/1 queues as follows:N Poisson pro-

cesses are superposed on network input queue into a new Poisson process with

parameter� �
PN

i�� �i. Next, the output process of network input queue is also

a Poisson process with parameter� according to the Burke’s theorem [Harr93].

The Poisson process is decomposed and arrives at server clusterSi with proba-

bility pi (� � i � M). The output processes of server cluster queues are also

superposed on network output queue into a new Poisson process with parameter

�. In summary, each queue in Figure 4.13 is modeled as follows:

	 network input: M/M/1,� �
PN

i�� �i, �ni, 	ni � ���ni

	 server clusterSi: M/M/1, pi�, �Si, 	Si � pi���Si

	 network output: M/M/1,�, �no, 	no � ���no

65

S�

SM

�S�

�SM

p�

pM

Nin

Nout

�ni

�no

��

�N

C�

CN

Figure 4.13: Queueing model of a large-scale server

We now intend to derive the distribution of response time in the network of

queues for each request of clients and to examine whether each data packet meets

its deadline. In other words, we calculate the probability that each packet request

is not serviced within its deadline, which is given by

P �packet loss� �
Z �

D
fW �t�dt� (4.5)

wherefW �t� denotes the probability density function (pdf) of response timeW in

the network of queues andD represents the deadline of each packet request, or the

playback time of a data packet. LetWni, WSi, andWno denote the response time

in network input queue, server clusterSi, and network output queue, respectively.

From the analysis of M/M/1 queue [Alle90], we obtain the pdf’s of response time

of each queue in the network:

fWni
�t� � �ni��� 	ni�e

��ni	���ni
t

fWSi
�t� � �Si��� 	Si�e

��Si 	���Si
t

fWno�t� � �no��� 	no�e
��no	���no
t �t � ��

(4.6)

66

The total response time in the network is given by

W � Wni �WSi �Wno� (4.7)

Then,fW �t� is calculated by convolvingfWni
�t�, fWSi

�t�, andfWno�t�:

fW �t� � fWni
�t�
 fWSi

�t�
 fWno�t� (4.8)

The complexity of convolution operation is very high. So, we now derivefW �t�

from the Laplace transformation technique [Klei75]. The Laplace transformF �
W �s�

of fW �t� is obtained from Eq. (4.8) as follows:

F �
W �s� � F �

Wni
�s� � F �

WSi
�s� � F �

Wno
�s�� (4.9)

whereF �
Wk

�s�(k � ni� Si� no) is given from Eq. (4.6) as

F �
Wk

�s� �
Z �

�
fk�t�e

�stdt � �k��� 	k����k��� 	k� � s� (4.10)

Finally, we getfW �t� by the inverse-Laplace transformation9 of Eq. (4.9):

fW �t� � B�e
�a�t �B�e

�a�t �B�e
�a�t (4.11)

a� � �ni��� 	ni� a� � �Si��� 	Si� a� � �no��� 	no�

B� �
a�a�a�

	a��a�
	a��a�

B� �

a�a�a�
	a��a�
	a��a�

B� �
a�a�a�

	a��a�
	a��a�

The correctness of Eq. (4.11) can be validated from Eq. (4.12).

E�W � �
B�

a��
�
B�

a��
�
B�

a��

�
�

a�
�

�

a�
�

�

a�
� E�Wni� � E�WSi� � E�Wno� (4.12)

9We employ the inspection technique [Klei75] here.

67

Table 4.3: Parameters used in the analysis

Symbol Description Values
N Number of clients
M Number of server clusters 10
Rs Stream rate 1.5Mbps
Rn Access network bandwidth � � ��Gbps
Rd Disk bandwidth in a server cluster �� � ���MB/s
Breq Request packet size 1KB
Bdata Data packet size 256KB
pi Probability that a client is serviced atSi ��M
k read-ahead 2

Consequently, from Eq. (4.5), the probability that each packet request is not ser-

viced within its deadline is derived as

P �packet loss� �
Z �

D
fW �t�dt

�
B�

a�
e�a�D �

B�

a�
e�a�D �

B�

a�
e�a�D (4.13)

4.4.2 Performance analysis

This subsection analyzes the performance of large-scale video servers based on

the queueing model described in Subsection 4.4.1. Table 4.3 represents the pa-

rameters which affect the performance of video servers. Parameters in Table 4.3

are applied to the queueing model as follows:

�ni �
Rn

Breq

� �no �
Rn

Bdata

� �Si �
Rd

Bdata

� �
NX
i��

�i � N�s � N � Rs

Bdata

(4.14)

68

480 490 500 510 520 530 540

0

0.2

0.4

0.6

0.8

1

Number of clients

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty

Queueing model
Simulation

Figure 4.14: Validation of queueing model

D � k � �

�s
� k � Bdata

Rs

In Eq. (4.14), we assume that all the clients request the same stream rate of video

streams and that all the server clusters are equivalent to each other. It is also

assumed that the load balancing between server clusters is achieved;pi � ��M

for � � i �M . This must be treated carefully on designing the server.

First, we validate the proposed queueing model through simulation. Given

the same value for each parameter, Figure 4.14 shows that the queueing model

is quite correct. Especially, it is meaningless when the packet loss probability is

greater than 0.2. We describe the results of queueing analysis in the rest of this

subsection.

The parameters which greatly affect the performance of large-scale video servers

are the disk bandwidth (Rd) and the access network bandwidth (Rn). Since the

access network bandwidth is closely related with the number of server clusters,

69

10 20 30 40 50 60 70 80 90 100

12345678910
0

2000

4000

6000

Disk b/w (MB/s)Network b/w (Gbps)

N
um

be
r

of
 c

lie
nt

s

Figure 4.15: Effect of disk and network bandwidth

it is considered carefully on the design of large-scale video servers. That is, the

following condition should be met:

Rn � Rd �M (4.15)

The effect of disk and network bandwidth is given in Figure 4.15.Z-axis repre-

sents the number of clients that can be serviced simultaneously while the packet

loss probability is less than 0.05. As shown in Figure 4.15, the more clients can

be serviced as the disk and network bandwidth increase. However, either of them

may be the performance bottleneck; so, the proper values for them should be de-

rived, which can be known from Figure 4.15.

Figure 4.16 depicts the effect of read-ahead parameterk. The deadlineD can

be increased by readingk data blocks ahead; the packet loss probability decreases.

As expected, the largerk performs better, but the performance gain decreases ask

increases. Since the buffer requirement also increases ask increases, we believe

that 2 or 3 read-ahead is the most appropriate. On the other hand, Figure 4.17

70

480 490 500 510 520 530 540

0

0.2

0.4

0.6

0.8

1

Number of clients

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty

 k = 1
 k = 2
 k = 3
 k = 4

Figure 4.16: Effect of read-ahead

480 490 500 510 520 530 540

0

0.2

0.4

0.6

0.8

1

Number of clients

P
ac

ke
t l

os
s

pr
ob

ab
ili

ty

 B
data

 = 256KB
 B

data
 = 512KB

 B
data

 = 768KB
 B

data
 = 1024KB

Figure 4.17: Effect of data block size

71

demonstrates that data block size does not affect the performance of video servers

in the analysis. This is because the disk bandwidth is fixed. As described in Chap-

ter 3, data block size is closely related with the disk bandwidth. We can conclude

from Figure 4.16 and Figure 4.17 that, if the disk bandwidth is not dependent upon

data block size, the large read-ahead is desirable rather than the large block size.

72

Chapter 5

Storage and retrieval in a

multi-resolution video server

Video can be encoded into multiple-resolution format in nature. Recent advances

in video coding technology make it possible to create a multi-resolution or scal-

able video stream. In general, a multi-resolution video stream permits the extrac-

tion of lower resolution subsets of the full resolution stream that may be decoded

independently. Employing the multi-resolution video in video servers provides

the following benefits:heterogeneous client support, storage efficiency, adaptive

service, and interactive operations support.

First, clients in a video service are likely to request various QoS parameters,

such as color depth, window size, and frame rate, because they have different

decoding capabilities and network bandwidth connected to the server. Second,

servicing single (full) resolution video streams for a wide range of clients results

73

in wasting server resources such as disk and network bandwidths. Since multiple

versions with different resolutions for each video stream lead to storage ineffi-

ciency, it is required to employ scalable video. Third, on the transient overloaded

condition, the server is able to provide adaptive services by gracefully degrading

the resolution levels. Furthermore, even when the admission of new clients fails,

the storage of scalable video permits the server to gracefully degrade the resolu-

tion levels of existing clients in order to service new clients. In addition, the server

can provide adaptability to the fluctuation in network bandwidth, which is one of

fundamental problems in mobile computing environment [Cho97c, Cho99a]. Fi-

nally, the lower resolution streams enable the server to efficiently support interac-

tive operations such as fastforward and rewind.

In this chapter, we present a design framework for video servers which provide

multiple resolution services: multi-resolution video model, server model, data

placement and retrieval of multi-resolution video, interactive operations support,

and admission control. We also describe implementation experiences of multi-

resolution video server.

5.1 System model

5.1.1 Multi-resolution video stream model

In general the notion of video resolution is defined in three dimensions: chroma,

spatial, and temporal. In these dimensions, video streams can be compressed into

74

component segment

C�
� C�

� C�
z�� C�

� C�
� C�

z�� Ci
� Ci

� Ci
z��

S� S� Si

Figure 5.1:z-level multi-resolution video stream model

multiple-resolution format by various scalable compression algorithms. A multi-

resolution or scalable video stream is a video sequence encoded such that subsets

of the full resolution video bit stream can be decoded to recreate lower resolution

video streams.

For the purpose of modeling multi-resolution video streams, we propose az-

level multi-resolution video stream model in Figure 5.1. A multi-resolution video

stream is a set of segments in which a segment consists ofz components. In other

words, for a video streamV ,

V � fSs j Ss is a segment� � � s � lg
Ss � fCs

c j Cs
c is a component� � � c � zg�

wheres andc denote the segment number and the component number, respec-

tively, and l is the number of segments, or the length ofV . The k-level res-

olution can be obtained by integratingk components from the lowest one; so,

fCs
c j � � s � l� � � c � kg are serviced. In the multi-resolution video model,

each video stream can be provided withz levels of quality and the QoS parameter

is represented by the number of components in a segment, ork. Full resolution

quality dictates the use of all the components.

The multi-resolution video stream described above can be implemented by

various coding technologies. The current scalable video compression techniques

75

include DCT-based schemes, subband (wavelet) schemes, fractal-based schemes,

and object-based schemes [Hunt]. First, of the standard codecs, only MPEG-2

[ISOb] addresses scalable video streams. Four techniques, namely data partition-

ing, SNR scalability, spatial scalability, and temporal scalability, can be used.

Since a frame consists of multiple layers, a frame can be mapped to a segment

in the proposed video stream model and the sub-layers of the frame constitute

components of the segment. Alternatively, multiple frames may be mapped to a

segment because a large storage/retrieval unit is beneficial to the disk performance

[Chan97]. For example, Paeket al. [Paek95] implement a three layer MPEG-

2 video stream. In their scheme, the base layer provides the initial resolution

video while an additional spatial enhancement layer allows for the upsampling

and hence increases in frame size of the base layer. A further SNR enhancement

layer provides increase in the visual quality of the base�spatial enhancement lay-

ers of video. One possible mapping from their video stream to our model is that a

group-of-picture (GOP) corresponds to a segment, that is,

V � fSs j Ss � GOPs� � � s � lg
Ss � fCs

c j Cs
c � GOPsc� � � c � �g�

where GOPs denotes thes-th GOP. The components GOPs
�, GOPs�, and GOPs� are

the base layer, the spatial enhancement layer, and the SNR enhancement layer for

GOPs, respectively.

MPEG-1, which is another DCT-based coding scheme, can also exploit scal-

ability techniques such as data partitioning with slight modification in existing

codecs [Shen95]. In addition, without modifying codecs, we can reconstruct

MPEG-1 video into the multi-resolution video model in temporal dimension as

76

follows: (1) A GOP is mapped to a segment. (2) AnI frame is the first compo-

nent in a segment. (3)P frames constitute the next one or more components. (4)

B frames constitute the rest of the components in the segment. This is similar to

a rearrangement scheme of Chang and Zakhor [Chan94] which stores the frames

within a GOP in a specific order.

Taubman and Zakhor [Taub94] propose and implement a scalable codec capa-

ble of generating bit rates from tens of kilo bits to several mega bits per second

with fine granularity of available bit rates. The codec is based on 3-D subband

coding and multi-rate quantization of subband coefficients, followed by arith-

metic coding. Chang and Zakhor [Chan97] use 11-layer scalable video streams

produced by the codec which range from 190 Kbps and 1330 Kbps in their work

for storage and retrieval of scalable video. We can reconstruct the video streams

into the proposed video model in the same way as the scalable MPEG-2 which is

described above.

Bogdan [Bogd94] proposes a multi-scale fractal video coding. The scheme

combines the still image pyramid coding and the ITT (iterated transformation

theory) inter-frame video coding methods to generate a hierarchy of bit-streams.

MPEG-4 is scalable in the sense that multiple objects can be added or removed

to compose a frame. The fractal-based and object-based coding schemes are also

consistent with the proposed model. Consequently, we can conclude that we can

utilize ‘off-the-shelf’ technology in order to implement the multi-resolution video

stream model.

77

CPU
system bus

LAN
node 0

Coordinator

node 1 node d-1disk 0 disk 1 disk d-1

storage
node 0

storage
node d-1

network
node 0

network
node d-1

interconnection
network

(a) single server (b) distributed server (c) parallel server

Figure 5.2: Architecture of multi-resolution video server

5.1.2 Server model

As described in Chapter 3 and Chapter 4, video servers range from a standard PC

for small-scale systems to massively parallel or distributed computers for large-

scale systems (see Figure 5.2). The architecture in Figure 5.2 can be modeled into

a disk array model where the server hasd disks and video data are striped across

the disks. In distributed or parallel servers, a disk corresponds to a disk subsystem

of each node. In this chapter, we assume the disk array model for the multi-

resolution video server architecture and consider the large-scale case (distributed

or parallel server) for system parameters. Many works are also founded on the

model but most of them conduct the worst case analysis for the performance of a

disk (i.e. the maximum seek time and rotational latency). This may underestimate

the disk performance. Furthermore, the analysis is not directly applicable to the

RAID disk subsystem in distributed or parallel servers. For flexibility, we consider

only the effective bandwidth� for the performance of a disk subsystem. The

value can be measured from a calibration program that determines the maximum

number of blocks that can be read within the given time interval [Maka97]. For

convenience’s sake, we use term ‘disk’ instead of ‘disk subsystem’ in the rest of

78

this chapter.

The operation of video servers is re-described briefly. A video server proceeds

in periodic rounds due to its periodic nature. In each service round of which the

length isTround, a video server retrieves the required amount of data with respect

to its playback duration and transmits them to remote clients. A double buffer

scheme enables the disk and network bandwidths to be effectively utilized. In

other words, in each round, data are retrieved to maximize the disk performance

and the transmission of data retrieved in the previous round is performed to ensure

the real-time playback capability considering the buffer space of each client. As-

suming that the network bandwidth is large enough for the transmission, we are

concerned about the effective disk bandwidth management for multi-resolution

video data.

5.2 Data placement for multi-resolution video

The performance of video servers is closely related with data placement. A data

placement scheme should explore the followings: First, it should provide deter-

ministic access for simple retrieval scheduling. Second, the performance effi-

ciency should be considered such as throughput and service latency. Third, it

should support interactive operations with reasonable cost. Next, the disk load

balancing should be achieved so that the server may be able to fully utilize the

aggregate disk bandwidth.

Before placing data on disks, we first have to determine storage units by which

79

data are written to or read from disk. Constant bit rate (CBR) video streams re-

quire the equal amount of data in each round, but variable bit rate (VBR) streams

do not. There exist two methods for VBR streams [Chan97]. The constant time

length (CTL) method is to store and retrieve video data in unequal amounts with

respect to its real-time playback duration. In contrast, the constant data length

(CDL) is to store and retrieve data in equal-sized blocks while utilizing buffer

memory to provide real-time playback. The former provides advantages in buffer

usage and disk throughput but has the fragmentation problem. The latter is consis-

tent with the current disk storage technology, but requires large buffer space and

complicated retrieval scheduling. In order to alleviate the problems, we can em-

ploy a hybrid method in which data are stored in fixed-size blocks, but the number

of blocks to be retrieved varies with the playback duration. The CTL method is

more efficient in a read-only environment such as VOD because it reads a large

chunk of data contiguously while there exist seek operations in the hybrid method

[Chan97]. On the other hand, the hybrid method is a viable approach for the

design of integrated multimedia file system where multimedia data are created,

edited, and deleted frequently [Vin95].

We model the hybrid approach in consideration of flexibility and allocate a

variable number of fixed-size blocks for a component, that is,size�C s
c � � bscB,

whereB denotes the disk block size. However, if we choose the smallest al-

location unit forB (one sector, or 512 bytes) and place blocks in a component

contiguously, it results in the CTL scheme. We follow this assumption for the

analysis in the rest of this chapter, because we target a video server where read re-

quests are dominant. As for the component sizesize�C s
c � in the multi-resolution

video stream model, we construct a segment based on the round lengthTround,

80

0 1 320 2 31

Disk Disk

S�

S�

S�

S�

S�

S�

S�

S�

(a) concurrency (b) parallelism

Figure 5.3: Striping strategies: concurrency vs. parallelism

so that a segment is serviced in each round. This leads to a large and logically

contiguous data chunks, and hence, the high disk throughput can be achieved.

We now intend to place multi-resolution video data on a disk array. There

exist two straightforward strategies which explore different aspects of the concur-

rency and parallelism offered by striping data across disks, as depicted in Figure

5.3. The degree of concurrency is defined as the number of outstanding requests

at one time and the parallelism describes the number of disks that service a single

request. Chang and Zakhor [Chan94] propose the periodic interleaving scheme

using the concurrency of multiple disks and Paeket al. [Paek95] define the second

strategy (parallelism) as the balanced placement scheme. The periodic interleav-

ing scheme accesses only one disk in a round for a segment and, in the balanced

placement, a segment is divided intod equal amounts of data and placed over all

d disks.

Two extremes of data placement show a tradeoff of disk throughput versus

service latency. The periodic interleaving scheme achieves high disk throughput

81

due to large and logically contiguous data chunks, but the worst case service la-

tency isd rounds [Paek95] because a service should be delayed considering the

load balancing of disk bandwidth1. The service delay consists of the waiting time

plus one round for filling a buffer in the double buffer system. On the contrary,

in the balanced placement, Paeket al. argue that the service latency is one round

all the time although relatively small data chunks cause to lower disk through-

put. They also present a hybrid multiple segmentation scheme, on the basis of the

tradeoff analysis. In the scheme, they define a segmentation levelS which repre-

sents the degree of parallelism. Each segmentation group (S disks) are performed

in parallel andd�S disks concurrently.

However, all the schemes are based on full-resolution services. For lower res-

olution services, a small quantity of data are retrieved in the periodic interleaving

and a subset of disks participate in the retrieval in the balanced placement scheme.

Hence, both schemes cannot guarantee their advantage (i.e. throughput and ser-

vice delay, respectively) in lower resolution services. In addition, they do not

consider the disk access boundaries for each component, so that each component

in a segment is not accessible independently. Furthermore, the load balancing

issue of disk bandwidth for VBR streams is not described.

To take advantage of both of concurrency and parallelism for each resolution

services, we place each segment of a video stream in parallel but each component

in a segment concurrently. In other words, since the independent access unit is

a component, we place each component contiguously in a disk and components

in a segment are striped across disks. The finer storage granularity provides the

advantages over the periodic interleaving scheme: better load balancing and less

1We also mentioned in Chapter 4.

82

Table 5.1: Advantages of the proposed data placement scheme

over the periodic interleaving over the balanced scheme
finer storage granularity sequential and independent access
better load balancing to each component
less bandwidth fragmentationload balancing on lower resolution services

disk bandwidth fragmentation. Disk bandwidth fragmentation refers to a situation

where the available bandwidth in each disk is not sufficient to accommodate an

incoming request, although there is sufficient aggregate bandwidth across disks in

the array [Chen95]. On the other hand, the proposed placement scheme guaran-

tees the sequential and independent access to each component, which the balanced

scheme does not provide. The balanced scheme incurs the load imbalance prob-

lem on lower resolution services because the lower resolution components are

placed on the same disk (see Figure 5.3).

In summary, by taking the hybrid approach of two strategies which explore dif-

ferent aspects of the concurrency and parallelism offered by striping data across

disks, the proposed placement scheme has the advantages over the periodic inter-

leaving scheme and the balanced scheme, respectively, as shown in Table 5.1.

We begin by introducing an example of data placement in Figure 5.4. Three

cases are identified according to the resolution level of streamz and the number

of disksd. First, in case ofz � d, components in a segment are distributed across

all the disks and successive components are placed on adjacent disks2. Next,

for the disk load balancing, the first components of successive segmentsSi and

Si�� (i.e.,Ci
� andCi��

�) are assigned on adjacent disks(diskj and diskj � �), as

2The adjacent disk of diskd� � is disk 0.

83

disk 0 1 2 3
C�

�
C�

�
C�

�
C�

�

V� C�

�
C�

�
C�

�
C�

�

C�

�
C�

�
C�

�
C�

�

C�

�
C�

�
C�

�
C�

�

� � � � � � � � � � � �

C�

�
C�

�
C�

�
C�

�

V� C�

�
C�

�
C�

�
C�

�

C�

�
C�

�
C�

�
C�

�

C�

�
C�

�
C�

�
C�

�

� � � � � � � � � � � �

(a)z � d

disk 0 1 2 3 4
C�

�
C�

�
C�

�
C�

�

V� C�

�
C�

�
C�

�
C�

�

C�

�
C�

�
C�

�
C�

�

C�

�
C�

�
C�

�
C�

�

� � � � � � � � � � � � � � �

C�

�
C�

�
C�

�
C�

�

V� C�

�
C�

�
C�

�
C�

�

C�

�
C�

�
C�

�
C�

�

C�

�
C�

�
C�

�
C�

�

� � � � � � � � � � � � � � �

(b) z � d

disk 0 1 2
C�

�
C�

�
C�

�

V� C�

�
C�

�
C�

�

C�

�
C�

�
C�

�

C�

�
C�

�
C�

�

� � � � � � � � �

C�

�
C�

�
C�

�

V� C�

�
C�

�
C�

�

C�

�
C�

�
C�

�

C�

�
C�

�
C�

�

� � � � � � � � �

(c) z � d

Figure 5.4: An example of data placement for multi-resolution video

shown in Figure 5.4(a) and 5.4(b). In addition, we distribute the starting point (the

first component in the first segment, orC�
�) of each stream across disks for load

balancing when multiple streams are requested concurrently. For the service ofV�

in Figure 5.4(a) with the second level resolution, for example, the first segment is

retrieved from disk 0 and disk 1 (C�
� andC�

� , respectively) and the second from

disk 1 and disk 2 (C�
� andC�

�). Next, whenz � d, multiple components in a

segment may be placed on a disk. However, the strategy is similar to the case of

z � d. That is, successive components in a segment are placed on adjacent disks

and the first components of successive segments are assigned on consecutive disks

as depicted in Figure 5.4(c). The data placement scheme allows deterministic

access to disks. ForV � fCs
c j � � s � l� � � c � zg, the disk which contains a

componentCs
c is calculated as follows3:

D�Cs
c � � �s� c � StartDiskV �d� (5.1)

whereStartDiskV indicates the disk in which the starting point (C �
�) of V is

3In Eq. (5.1), we definey � �x�d if x � a � d� y, � � y � d, for all integer values.

84

stored.

We now show the disk load balancing property of the placement scheme. Since

the number of concurrent clients in a video server with multiple disks depends on

the most heavily loaded disks [Vin95], this issue should be examined carefully.

LetVi�k denote a set of components retrieved in diski duringk-level service ofV .

From Eq. (5.1), we obtain

Vi�k � fCs
c j D�Cs

c � � i� � � s � l� � � c � kg� (5.2)

Theorem 5.1 Given the parameters above,jVi�kj is given as follows:

jVi�kj �
�
l

d

�
� k �
 �� �
 � d� (5.3)

Proof: See Appendix A. �

Theorem 5.1 indicates that, regardless of the resolution level of video service,

components are evenly distributed across all the disks. Disk load balancing in

CBR video streams can be directly derived from Theorem 1 because CBR streams

have equal-sized components ofsize�Cs
c � � bB, � � s � l, � � c � z.

When a VBR scalable coding algorithm is employed to obtain the compres-

sion efficiency, the size of each component varies, that is,size�Cs
c � � bscB is

not constant. This may lead to the load imbalance. In [Shen98], Shenoy and Vin

suggest a scheme in which the block size can vary across sub-streams (lower reso-

lution streams) but is fixed for a given sub-stream to maximize performance. This

can be realized in the multi-resolution video stream model by fixing the number

85

of blocks in the same component level, orbsc � bc, � � s � l. The number of

blocks for storing components inVi�k, orn�Vi�k� is calculated from Eq. (5.3).

n�Vi�k� �
X
s

X
c Cs

c�Vi�k

bsc �
k��X
c��

�
� X
s�Cs

c�Vi�k

bc

�
A

�
k��X
c��

�
l

d

�
bc (5.4)

From Eq. (5.4), we can observe that the disk workload in VBR streams is also

evenly distributed for any resolution video stream. Even whenbsc is variable in

the same component level, it is expected that the following equation holds statis-

tically:

n�Vi�k� �
k��X
c��

�
l

d

�
E�bc�� (5.5)

whereE�bc� is the mean ofbsc for � � s � l, or E�bc� � �
l

Pl��
s�� b

s
c. We will

validate Eq. (5.5) through experiments in Section 5.4.

Observe that we achieve the disk load balancing for a given resolution video

service. However, we have to consider another load balancing issue for the work-

load induced by concurrent clients. The issue should be treated in the retrieval

scheduling upon startup or interactive operations.

5.3 Data retrieval for multi-resolution video

As mentioned earlier, a video data retrieval proceeds in periodic rounds. In the

multi-resolutoin video server, multi-resolution video data are constructed such

that a segment is played back forTround. So, for each video streamVj, a segment

is serviced in a round, and hence,k components are retrieved in parallel across

86

Procedure Scheduleri
input: Vj � �kj� sj� Kj� StartDiskVj � direction�� � � j � N
output: Di, a set of components to be retrieved from diski in a round
begin
1: clearDi

2: for j �� � to N
3: for m �� � to Kj

4: for c �� � to kj � �
5: if (�sj � c� StartDiskVj �d � i)
6: insertCsj

c intoDi

7: end if
8: end for
9: sj � sj � direction
10: end for
11: end for
end

Figure 5.5: Scheduler at diski

disks fork-level resolution service. Since the data placement scheme proposed in

Section 5.2 allows deterministic access for each component, each disk can retrieve

data independently.

In Figure 5.5, we present a simple retrieval scheduling procedure performed at

disk i in each round. The input parameters of a video stream consist of its resolu-

tion level (kj), the current segment number (sj), the number of segments retrieved

in a round (Kj) which is one in normal playback,StartDiskVj , and playback

direction which is set to 1 or -1 according to forward and reverse playbacks, re-

spectively. The scheduler generates a set of componentsDi to be retrieved from its

disk in each round. In Line 6 of Figure 5.5, we can incorporate a disk scheduling

algorithm to optimize the performance of its disk subsystem.

87

While each disk performs data retrieval independently, we have to schedule

the requests of clients globally (request scheduling), as mentioned in Section 5.2,

so that the disk workload induced by concurrent clients may be evenly distributed

across the disks. The strategy is to delay the start point of service considering the

disk load balancing. Since the workload in a disk is shifted to the next disk in

the next round, we can calculate the average workload in each disk for the nextr

rounds (r � d). One observation is that the maximum number of blocks retrieved

in a disk should be minimized, because the most heavily loaded disks determine

the number of clients that can be serviced simultaneously. We delay the start

point of service until the maximum number of blocks retrieved in each disk is

minimized. The worst case service latency isr rounds. The look-ahead parameter

r presents a tradeoff between disk load balancing and service latency. We assume

r � d in the rest of this chapter because it is worthwhile to increase the number

of concurrent clients at the expense of acceptable service latency in video servers.

We present an experimental result in Section 5.4 which shows that the number

of concurrent clients increases significantly at the expense of acceptable service

latency.

5.3.1 Support for interactive operations

Interactive operations are essential for video services. Clients are likely to per-

form VCR-like operations on video they are watching, such as pause, resume,

fastforward, rewind, and slow playback. Fast scan operations, namely fastforward

and rewind, should be treated carefully because they require additional server re-

sources. In general, two approaches support them: encode separate streams and

88

skip frames. The first approach needs extra storage space and the second approach

may lead to load balancing problems [Lee98].

The multi-resolution video server supports fast scan operations without any

additional overhead by degrading the resolution level and retaining the data rate

of the video stream. For example, let us assume that a fastforward operation is

requested for a video stream with the fourth level resolution. If we lower the res-

olution level to the second level and the first level, the two-times-fastforward and

the four-times-fastforward can be accomplished, respectively, without any addi-

tional disk and network bandwidth. Shenoy and Vin [Shen98] validate this idea

by a scalable encoding technique in which the low-resolution-based sub-stream

provides acceptable video quality for scan operations. For the case of low resolu-

tion level where it is impossible to degrade the level, a segment skipping scheme

[Chen94] can be integrated with our scheme.

The scheduler in Figure 5.5 can be updated in order to support interactive

operations as follows. We assume that an interactive operation is requested to

Vj � �kj� sj� Kj� StartDiskVj � direction�. All interactive operations are sup-

ported simply by reconstructing the input parameters ofVj.

Fastforward The new input parameters are given byV
�

j � �k
�

j� sj� K
�

j� StartDiskVj �

direction
�

�, wherek
�

j � kj�m, K
�

j � mKj, anddirection
�

�
. In this

case, we can achievem �
-times fastforward4. When
 � �, the segment

skipping scheme is employed. For instance, when four-times fastforward

4In more detail,
RVj�kj

R
Vj�k

�

j

� �-times fastforward is achieved, whereRV�k denotes the average

playback rate ofV with k resolution service.

89

is requested toVj � �	� ����� �� �� �� that is being played back with forth-

level resolution, we can obtainV
�

j � ��� ����� 	� �� ��. In addition, when

Vj � ���
���� �� �� �� (i.e. normal playback with first-level resolution),

the segment skipping scheme is incorporated byV
�

j � ���
���� �� �� �� for

five-times fastforward. As mentioned above, the segment skipping scheme

leads to disk load imbalance when
 andd have the least common multiple

(LCM). For example, consider a video server having four disks in Figure

5.4(a). For two-times fastforward ofV� � ��� �� �� �� ��, V
�

� is given to

��� �� �� ��
�. Then the server retrieves a sequence ofC�
� , C�

� , C�
� , C�

� , � � �,
so that disk 0 and disk 2 will handle all the retrievals. This problem can be

solved by selecting
 such that
 is relatively prime tod [Kwon97].

Rewind This is equivalent to fastforward exceptdirection
�

� �
.

Slow playback Reducing the number of segmentsKj accomplishes the slow

playback, orK
�

j � Kj�m for m-times slow motion. WhenK
�

j � �, Vj

is excluded from the input list of the scheduler untilLj � �, whereLj

(initially K
�

j) is increased byK
�

j in each round and decreased by one when

Lj � �.

Pause and resume The scheduler excludesVj on pause and includesVj again on

resume.

5.3.2 Admission control

A video server must employ an admission control algorithm to decide whether a

new client can be serviced without violating the real-time requirements of clients

90

already being serviced. Since a CBR video streamVj produces a constant disk

workload (nj blocks) in each round, we can employ a simple admission control

algorithm which checks if all the blocks (
PN

j�� nj) for N streams can be retrieved

in a round. For VBR streams, the simple algorithm may usenj � max��i�s�n
i
j�

or avg��i�s�nij�, wherenij is the number of blocks to be retrieved in thei-th round.

However, this causes to under-utilize or over-utilize the server resources, respec-

tively.

Admission control algorithms for VBR streams may be classified into two

categories: statistical and deterministic. The first approach exploits the bit rate

statistics of video streams and the second approach does the specific knowledge

of the bit traces of video streams. Vinet al. [Vin94] propose a statistical admis-

sion control algorithm with a mechanism enforcing statistical service guarantees.

They compute the overflow probability, which is the probability that the service

time for a single disk access exceeds the round duration, by determining the total

number of blocks in a round statistically and empirically measuring a distribution

function for the service time. Chang and Zakhor [Chan97] calculate the probabil-

ity of overload by integrating the probability density function of the aggregated

resource required by all clients beyond a given threshold limit. The threshold

limit is computed from a single disk performance analysis on their data placement

schemes. Makaroffet al. [Neuf96, Maka97] propose a deterministic admission

control algorithm based on the stream block schedule which contains the num-

ber of blocks to be retrieved in each round. The admission of a new stream is

accomplished by merging the stream block schedule with the existing one and

checking a system overflow during the length of the request. The deterministic

admission control algorithm provides a tight and safe bound for the admission,

91

but its complexity is relatively high.

We now describe an admission control algorithm in the multi-resolution video

server. Assume that clientj for � � j � N � � is being serviced withkj-level

resolution ofVj and a new clientN requestsVN with kN -level resolution service.

Since each disk must retrieve all the components scheduled in Figure 5.5 every

round for the deterministic service guarantee, the following inequality must be

satisfied in each disk:

n�Di��B � Tround�� � � i � d� (5.6)

wheren�Di� denotes the number of blocks required to storeDi. In Eq. (5.6),

n�Di� can be calculated deterministically in CBR multi-resolution video streams,

butn�Di� varies from round to round in VBR case. For VBR streams, we attempt

to estimate an upper boundnupper of n�Di� statistically such that

Poverflow � P �n�Di� � nupper� � �� (5.7)

A new clientN is admitted if the following inequality holds.

nupper � B � Tround� (5.8)

For the statistical estimation of the total number of blocks retrieved in a round for

all clients, Vinet al. use the central limit theorem and Chang and Zakhor compute

the probability density function (pdf) by the convolution of each individual pdf for

a video request. They assume that, however, all the blocks are serviced in a single

disk. In a disk array environment where data blocks are serviced across multiple

disks, their approach may be incorrect. We further describe how to estimaten�Di�

in the next section along with experiments.

92

The inherent feature of the multi-resolution video server enables the server to

renegotiate the service resolution level with clients failed in the admission control.

The server can present a lower resolution level which satisfies Eq. (5.8). Further-

more, if it is permissible to degrade the resolution level of existing clients, more

clients can be serviced. Transient degradation may be required for the rounds

in which the actual number of blocks to be retrieved is greater thannupper. If the

scheduler in each disk detects the overflow, it degrades the service level uniformly

across all the clients until Eq. (5.8) is satisfied.

It is noteworthy that according to Eq. (5.8) the buffer requirement of the server

is
nupperB per disk. This value is much smaller than that of the static policy

which allocates the worst-case fixed-size buffer to each client.

5.4 Experimental evaluation

In this section, we evaluate the proposed schemes through experiments with trace

data generated from actual scalable video streams. As mentioned in Subsection

5.1.1, we consider three VBR scalable compression techniques: MPEG-1 with

temporal scalability, MPEG-2 with spatial and SNR scalability, and 3-D subband

coding scheme. Table 5.2 shows the average bit rate of each resolution level for

three kinds of trace data. To construct the multi-resolution video stream, the round

lengthTround should be determined first. The round length provides trade-off

between disk throughput and buffer requirement. Chang and Zakhor [Chan97]

suggest that the total system cost is minimized atTround of one second from cost

analysis and many other works assume one second forTround [Vin94, Bolo96].

93

Table 5.2: Average bit rate (Mbps) of each resolution level for trace data

Resolution level 1 2 3 4/8 5/9 6/10 7/11
MPEG-1 (30fps) 0.18 0.8 1.5
MPEG-2 (24fps) 0.32 1.152 3.008

3-D subband (24fps) 0.190 0.253 0.316 0.380 0.506 0.633 0.760
0.887 1.013 1.140 1.330

We also choose one second forTround.

5.4.1 Disk load balancing

First, we validate Eq. (5.5) which indicates that the disk workload for any reso-

lution service for a given video stream is evenly distributed across all the disks

even for VBR case. Figure 5.6 presents the number of blocks retrieved in each

disk for 30 minutes (l � �
��). The value of the right-most bar in each graph is

calculated from Eq. (5.5). As shown in Figure 5.6, the proposed data placement

scheme guarantees the disk load balancing for a video service.

Next, to explore the actual behavior of the multi-resolution video server, we

have created an event-driven simulator written in C with SMPL [Mac87] libraries.

The simulator models the server including data placement and retrieval. Along

with three types of trace data for multi-resolution video streams in Table 5.2, the

server is assumed to have eight disks and to store 24 video streams (eight for each

type in Table 5.2). The video streams are placed on disks according to the data

placement scheme with different starting points (StartDiskV). We assume that

each client randomly chooses a video stream and resolution level.

94

0 1 2 3 4 5 6 7 Approx.
0

1

2

3

4

5

6

7

8

9
x 10

4 MPEG−1

Disk #

N
um

be
r

of
 b

lo
ck

s

1
2
3

0 1 2 3 4 5 6 7 Approx.
0

2

4

6

8

10

12

14

16

18
x 10

4 MPEG−2

Disk #

N
um

be
r

of
 b

lo
ck

s

1
2
3

0 1 2 3 4 5 6 7 Approx.
0

1

2

3

4

5

6

7

8
x 10

4 3−D subband

Disk #

N
um

be
r

of
 b

lo
ck

s

1
2
3
4
5
6
7
8
9
10
11

Figure 5.6: Distribution of disk workloads for a given resolution service

95

0 600 1200 1800 2400 3000 3600
0

1

2

3

4

5

6

7

8
x 10

4

Round #

N
um

be
r

of
 b

lo
ck

s
300 clients

Disk 0
Disk 1
Disk 2
Disk 3
Disk 4
Disk 5
Disk 6
Disk 7
Total

(a) No request scheduling

0 600 1200 1800 2400 3000 3600
0

1

2

3

4

5

6

7

8
x 10

4

Round #

N
um

be
r

of
 b

lo
ck

s

300 clients

Disk 0
Disk 1
Disk 2
Disk 3
Disk 4
Disk 5
Disk 6
Disk 7
Total

(b) Request scheduling

Figure 5.7: Distribution of disk workload for 300 clients

96

Figure 5.7 presents the number of disk blocks retrieved in a disk in each round

for 300 concurrent clients. For the first 30 minutes (1800 rounds), clients arrive,

while the services continue for the next 30 minutes. The fluctuation of work-

loads in each disk is very large from round to round in Figure 5.7(a) since we

do not apply the request scheduling. This occurs because the disk workload is

not evenly distributed across the disks in a given time point. At the expense of

service latency, we schedule the start point of services to minimize the maximum

number of blocks retrieved in a disk. By the request scheduling, we can evenly

distribute the disk workloads in each round, so that the variation of workloads in

a disk decreases significantly, as shown in Figure 5.7(b). It should be noted that

the variation of workloads in a disk is smaller than that of the total workloads.

This indicates that more clients can be serviced by the request scheduling since

the most heavily loaded disks determine the number of concurrent clients in video

servers.

5.4.2 Admission control

In Subsection 5.3.2, we described the admission control strategy. Since the num-

ber of blocks to be accessed at diski in each round, orn�Di�, varies in VBR

streams as shown in Figure 5.7, we intend to estimate an upper boundnupper from

Eq. (5.7) for the statistical service guarantee. First, we take two existing ap-

proaches in a single disk system: central limit theorem [Vin94] and convolution

[Chan97]. Let a random variablenj denote the number of blocks to be accessed

in each round for clientj. The total number of blocks forN clients is given

by n �
PN

j�� nj. Using the central limit theorem, Vin,et al. [Vin94] estimate

97

74000 76000 78000 80000 82000
0

1

2

3

4

5

6
x 10

−4

Number of blocks

P
ro

ba
bi

lit
y

300 clients

Simulation
CLT
Convolution

(a) single disk

5000 7000 9000 11000 13000 15000
0

0.5

1

1.5
x 10

−3

Number of blocks

P
ro

ba
bi

lit
y

300 clients, Disk 0

Simulation
CLT
Convolution

(b) multiple disks

Figure 5.8: Estimation with existing schemes

98

round 0

round 1

round 2

round 3

round 4

round 5

round 6

round 7

0 1 2 3
Disk

repeated

C�
� C�

� C�
�

C�
� C�

� C�
�

C�
� C�

�C�
�

C�
�C�

� C�
�

C�
� C�

� C�
�

C�
� C�

� C�
�

C�
� C�

�C�
�

C�
�C�

� C�
�

Figure 5.9: An example of the 3rd level resolution service

the distribution function ofn as a normal distribution with�n �
PN

j�� �nj and

��n �
PN

j�� �
�
nj

, where�n and��n denote the mean and the variation respectively.

Chang and Zakhor [Chan97] compute the pdffn�x� by convolvingfnj�x� for

� � j � N . When all the blocks are serviced in a single service point (i.e. disk),

both of the two approaches give the exact estimation as shown in Figure 5.8(a).

In a disk array environment where data blocks are serviced across multiple

disks, however, they may not produce the proper estimation. In Figure 5.8(b),

the estimation of two approaches shows a large difference with the result of the

simulation; the approaches should be updated in a disk array environment. Ob-

serve that the disk request pattern for a video stream is repeated periodically with

the period ofd rounds. In Figure 5.9, for example, the first four rounds are re-

peated while the service proceeds. Furthermore, from the view point of each disk,

the components retrieved duringd rounds contain each resolution level, although

99

they are not in the same segment, for instance in Figure 5.9,fC �
� � C

�
� � C

�
�g in disk

0 andfC�
� � C

�
� � C

�
�g in disk 1. This indicates that disk blocks ford rounds are per-

fectly distributed across all the disks duringd rounds; the variation of the number

of blocks to be accessed at a disk duringd rounds is much smaller than that of

the number of blocks in each round. In addition, the request scheduling evenly

distributes the disk workloads for concurrent clients. Eventually, it is statistically

true thatnj blocks are evenly distributed acrossd disks in each round. Thus,

given a video stream, we can compute the mean and the variance for the number

of blocks (n
�

j) to be accessed at a disk in each round as follows:

�n�
j
� �nj�d� ��

n
�

j

� ��nj�d� (5.9)

Using the central limit theorem,n�Di� �
PN

j�� n
�

j approaches a normal distribu-

tion N��� ��� where� �
PN

j�� �n�j
and�� �

PN
j�� �

�
n
�

j

. From Eq. (5.7), then,

nupper is computed by

Z �

nupper

�

�
p

�

e�
�x����

��� dx � �� (5.10)

Finally, we can admit a new clientN if nupper satisfies Eq. (5.8). The statistics

of the random variablenj which denotes the number of blocks to be serviced in a

round for clientj can be knowna priori from the traces for the service ofV with

k-resolution at the time the video stream is stored as follows:

�Vk �
�

s

l��X
s��

k��X
c��

bsc� ��Vk �
�

s

l��X
s��

��
k��X
c��

bsc

�
� �Vk

��

(5.11)

Figure 5.10 exhibits that the proposed scheme gives an accurate estimation to

the actual number of blocks required for the service. We comparenupper calcu-

lated from Eq. (5.10) with the value measured from the simulation. As shown

in Figure 5.10, regardless of the number of clients and the number of disks, the

100

8000 9000 10000 11000 12000
0

0.5

1

1.5
x 10

−3

Number of blocks

P
ro

ba
bi

lit
y

300 clients, 8 disks

Estimation
Simulation(Disk 0)
Simulation(Disk 1)
Simulation(Disk 2)
Simulation(Disk 3)
Simulation(Disk 4)
Simulation(Disk 5)
Simulation(Disk 6)
Simulation(Disk 7)

300 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of clients

 n
up

pe
r

8 disks (ε=0.001)

Simulaiton
Approximation

4 8 16
0

0.5

1

1.5

2

2.5
x 10

4

Number of disks

 n
up

pe
r

300 clients (ε=0.001)

Simulaiton
Approximation

Figure 5.10: Estimation with the proposed scheme

101

300 500 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of clients

 n
up

pe
r

8 disks (ε=0.001)

Request scheduling
No scheduling

4 8 16
0

0.5

1

1.5

2

2.5
x 10

4

Number of disks

 n
up

pe
r

300 clients (ε=0.001)

Request scheduling
No scheduling

Figure 5.11: Effect of the request scheduling

102

admission control strategy precisely estimate the actual number of blocks to be

accessed at a disk. This indicates that the server resources such as disk band-

width and buffer memory can be fully utilized. In Figure 5.11, the effect of the

request scheduling is presented. By reducingnupper, the request scheduling en-

ables the server to efficiently provide services for more clients. We can also find

from Figure 5.11 that the effect of the request scheduling becomes larger as the

number of disks increases, since the disk load balancing is more significant on

a large number of disks. In the experiment, the request scheduling reduces the

required bandwidth by about 9.8 Mbps per disk, but the average service latency

increases by 2.16 seconds. We believe that it is worthwhile to increase the number

of concurrent clients at the expense of acceptable service latency.

5.5 Implementation of a multi-resolution video man-

ager: MRVman

In this section, we implement a multi-resolution video manager, or MRVman5, to

realize the proposed techniques in Chapter 5. For the quick implementation, we

update DAman described in Chapter 3 to provide multi-resolution video services.

Since DAman consists of several functional managers, it is easy to add or update

each function. MRVman is implemented by updating the file system manager and

the striping manager of DAman.

5Source codes for MRVman can be accessed athttp://cselab.snu.ac.kr/�cjs/
research/MRVman.html.

103

File System Manager
 MRVopen MRVclose MRVread MRVwrite
 MRVseek MRVrm MRVfsck MRVmkfs
 MRVls MRVmv MRVfree MRVlbsize
 MRVmalloc MRVrequest

Striping Manager
MRV striping

StripRequest()

SCSI Manager
Management of SCSI adapters and disks

SCSIRequest()

AHAcommand()

User request
MRVman

Interrupt
Handler

Interrupt
Manager

QNX real-time microkernel OS

H/W (SCSI adapters and disks)

MRVman library
Stub

Applicaiton
Program

Figure 5.12: Overall architecture of MRVman

5.5.1 Overall architecture

First of all, we employ MPEG-1 streams with hardware decoder for multi-resolution

video streams. As mentioned in Section 5.1.1, MPEG-1 video streams are recon-

structed into the multi-resolution video model in temporal dimension. In the first

prototype of the server, the resolution level is provided with high, medium, or

low. MPEG-1 video streams are parsed and separated by the frame type, and

then, a segment is made up of a GOP. A set of the same type frames in the

GOP constructs each component in a segment, for example,�I��, �P�� P�� P�� P��,

�B�� B�� B�� B�� B�� B�� B�� B
� B�� B���.

Figure 5.12 depicts the overall architecture of MRVman which is similar to

that of DAman. The major differences between DAman and MRVman are file

104

I PPPP BBBBBBBBBB

BBBBBBBBBBI

I

I

I

PPPP

PPPP

PPPP

PPPP

BBBBBBBBBB

BBBBBBBBBB

BBBBBBBBBB

Disk 0 Disk 1 Disk 2 Disk 3

1st GOP

2nd GOP

3rd GOP

4th GOP

5th GOP

Figure 5.13: Data placement in MRVman

systems and striping policy. System calls are updated for multi-resolution video

services as shown in Figure 5.12 and the striping manager places video streams

according to the multi-resolution video data placement scheme proposed in Sec-

tion 5.2. Further description proceeds in the next subsection.

5.5.2 Multi-resolution video file system

We begin by introducing data placement of a video file. As mentioned ear-

lier, MPEG-1 video streams are reconstructed into the multi-resolution video

stream model in temporal dimension and the resolution level is provided with

high, medium, or low (z � �). Since the prototype has four disks (d �), a

reconstructed MPEG-1 video file is placed on disks according to the placement

scheme in Figure 5.4(c)z � d (see Figure 5.13). While placing video files, MRV-

man should maintain some meta information as followings:

struct meta info f
int picture type;

int size;

105

super block
directory block

meta block
bitmap block
data block

Figure 5.14: MRVman file system structure

int disk;

int sector number;

int sector count; g;
The striping manager of MRVman maintains such meta information. MRVman

has a similar file system structure to DAman as shown in Figure 5.14. Each block

has the same function with that of DAman in Section 3.4 except that the meta

block contains meta information described above.

Similarly to DAman, MRVman supports 16 run-time libraries in Figure 5.15

and 7 file system utilities in Table 5.3. In what follows, we briefly describe storage

and retrieval of multi-resolution video streams in MRVman.

	 Storage: The multi-resolution video file system parses MPEG-1 video files

and distributes them by the picture type as shown in Figure 5.13. Hence,

storage of multi-resolution video files on MRVman can be accomplished

only by cp2mrv command in Table 5.3. Thecp2mrv command parses

MPEG-1 video files [ISOa] and store each picture on disks in compliance

with the proposed multi-resolution video data placement scheme through

mrv write function. At the same time, MRVman stores the related meta

information on meta block.

106

int mrv open(char *file name, int flag);
int mrv close(int handle);
int mrv read(int handle, char far *buf, int max size,

int resolution level);
int mrv write(int handle, char far *buf, int size,

int picture type);
int mrv request(int n, Req Blk t *req blk);
int mrv rewind(int handle);
int mrv mkfs(int logical block size);
int mrv fsck(void);
int mrv lbsize(void);
int mrv ls(DirEnt t *dir, char *name);
int mrv rm(char *file name);
int mrv mv(char *source, char *dest);
char far * mrv malloc(int size);
int mrv free(char far *pointer);
char * far2near(char far *pointer, int size);
int mrv errmsg(void);

Figure 5.15: Run-time libraries for MRVman

	 Retrieval: Application programs such ascpmrv2 and video servers re-

trieve multi-resolution video data only bymrv read function in Figure

5.15. MRVman retrieves the given resolution of video data up to amount of

buffer size. The retrieval unit is the picture. In other words, for example,

when the given buffer size accommodates 10 pictures and some part of a

picture, only 10 pictures are retrieved concurrently across disks in the array.

In the retrieval, the picture sequence is reorganized into the original, so that

the existing MPEG hardware/software decoder can work.

On the other hand, MRVman has the following features: First, it supports

multi-resolution video services by reconstructing MPEG-1 video files without any

special decoder. Second, it supports interactive operations without any additional

cost such as disk and network bandwidth. Third, the multi-resolution video stream

107

Table 5.3: Utilities for MRVman

Command Description
cp2mrv copy a file to MRVman
cpmrv2 copy a file from MRVman
mkmrvfs make a MRVman file system
mrvls list directory entries
mrvrm remove a file
mrvmv move (rename) a file
mrvfsck check MRVman file system

model allows to use only the necessary portion of data; MRVman effectively man-

ages the server resources. Finally, by the multi-resolution video data placement

scheme it can achieve load balancing among disks and thus effectively manage

the aggregate disk bandwidth.

5.5.3 Multi-resolution video on-demand system

In order to verify the multi-resolution video playback of MRVman, we develop

a small-scale prototype of multi-resolution video-on-demand system which con-

sists of a server and a client. Client and server are connected through Ethernet

and TCP/UDP protocols are used. On top of MRVman, a VOD server is imple-

mented and client programs run on Windows 95 with RealMagic hardware MPEG

decoder6. With the help of MRVman, the client program can be implemented with

existing libraries supported by RealMagic MPEG decoder7 while providing high,

medium, and low resolution video services. Figure 5.16 shows the window of

6Sigma Designs Inc.
7The libraries can be accessed athttp://www.sigmadesigns.com.

108

Figure 5.16: Client window in the prototype

client program in the prototype. The prototype exhibits that the visual quality of

the multi-resolution playback and fastforward playback is acceptable. This gives

us more insights into the proposed techniques when extended to a practical envi-

ronment.

5.5.4 Empirical evaluation

This subsection measures the execution time of MRVman with a timer board

which has 0.1�s granularity and analyzes the results. Meanwhile, we employ

a MPEG-1 video filemission.mpgwhich is compressed by MPEG-1 encoder8

using the part of a movie title ‘Mission Impossible’ about 20 minutes.

8OptiVision Inc.

109

Table 5.4: Execution time of MRVman (�s)

Functional manager Execution time (read)
Request to MRVman 94.0
File system manager 389.1

Striping manager 4839.2
SCSI manager 320.7

Interrupt manager 16918.4

First of all, the analysis ofmission.mpg indicates that (1) a GOP consists

of 1 I picture, 4P pictures, and 10B pictures and (2) the average sizes ofI, P ,

andB pictures are 16657B, 8183B, and 4399B, respectively (3.79:1.86:1). So,

the playback rates of high, medium, and low resolution are 1.5Mbps, 0.8Mbps,

and 0.18Mbps. On the other hand, the ratio ofI, P , B picture sizes shows great

differences along the type of video streams [Rose95]. Hence, according to the

stream type and encoding parameters in MPEG-1 (N andM) [ISOa], various

resolution levels can be provided.

Next, Table 5.4 shows the execution time of each functional manager of MRV-

man. The values are the elapsed times for retrieving one segment or a GOP (15

pictures) withmrv read function. As shown in Table 5.4, the relatively large

portion of time is spent in the striping manager and the interrupt manager. This is

because the striping manager should read meta information from meta block and

the interrupt manager should copy data into user address space. For identifying

data copying overhead, we compare the elapsed time ofmrv read with that of

mrv write which exploits DMA mechanism. The execution time of interrupt

manager is 1672�s inmrv write; so, the data copying overhead would be 90%

of the execution time of interrupt manager.

110

Table 5.5: Effect on storage overhead and retrieval time of logical block size

Logical block size Storage overheadRetrieval time
0.5 KB 3.8 % 116504.2�s

1 KB 9.3 % 94869.7�s
2 KB 19.2 % 104482.4�s
4 KB 33.9 % 120853.0�s

Table 5.6: Effect of the number of disks

Number of disks Retrieval time
1 118159.0�s
2 109420.7�s
3 94574.9�s
4 94869.7�s

As described in Subsection 5.5.2, MRVman stores video streams by the pic-

ture. The storage unit is the logical block of which the size is usually 1�4 KB

in most operating systems. In general, the size of logical block affects the stor-

age efficiency and the read performance of disks. When the logical block size

becomes larger, it is expected that the read operation performs better but the stor-

age efficiency becomes worse. The effect on the storage efficiency and the read

performance of logical block size is given in Table 5.5. Table 5.5 indicates that

the logical block of 1KB reveals the best performance in the retrieval time. In ad-

dition, when the logical block size is greater than 1KB, the large storage overhead

results in the large retrieval time. We can conclude that the most appropriate value

of logical block size in MRVman is 1KB.

Table 5.6 presents the effect of the number of disks. Since the resolution level

of a video stream is three (high, medium, and low), striping on 3 and 4 disks

111

Table 5.7: Effect of video resolution

Resolution Retrieval time
High 94869.7�s

Medium 50308.7�s
Low 25307.7�s

Table 5.8: Effect of multiple streams

Number of streams Retrieval time
1 94869.7�s
2 163205.3�s
3 244365.6�s
4 326490.1�s
5 396571.3�s

show the similar performance. However, striping on 4 disks has an idle disk in

each round; it can service more clients. When the number of disks is 1 or 2, the

retrieval time increases because multiple disk requests may arrive at a disk.

So far we experimented with high resolution video service. Since lower reso-

lution service needs smaller amount of data, it is expected that the retrieval time

decreases. Table 5.7 presents the result. Hence, it is verified that MRVman can

service more clients by degrading the resolution levels of existing clients.

We described the retrieval time of a single video stream until now. MRVman

supports multiple read/write operations bymrv request. Table 5.8 presents

the retrieval time of multiple streams throughmrv request function. It results

from disk load balancing that the retrieval time does not show linear increase on

the number of disks. In other words, while there is an idle disk on the service of

112

Table 5.9: Number of disk blocks retrieved in each disk (l � ����)

Resolution Disk 0 Disk 1 Disk 2 Disk 3
High 25247 25280 25248 25254

Medium 12954 12955 12938 12931
Low 2620 2563 2545 2598

one stream, the service of multiple streams activates all the disks in the array.

Finally, Table 5.9 validates once more the disk load balancing property of

MRVman although it is validated through simulation in Subsection 5.4.1.

113

Chapter 6

Conclusions

In this thesis we have addressed the problems of designing video servers in vari-

ous environments by providing efficient storage and retrieval of video data. The

followings summarize the main results obtained from the thesis:

	 A simple performance analysis of disk arrays through simulation studies

for a single server architecture recommended that (1) the number of disks

should be less than four, (2) SCAN is a competitive disk scheduling algo-

rithm, (3) the striping policy should be AID5, (4) 1�2 tracks are appropriate

for the striping unit size, and (5) each video stream should be placed con-

tiguously.

	 Implementation of a disk array manager (DAman) validated the above re-

sults. Although the absolute values in the graphs obtained from simulation

studies and performance measure of DAman are different from each other,

the shapes of the graphs (i.e. the tendency to the effects of parameters on

114

performance) are similar.

	 On top of DAman, a video server has been developed. By integrating the

server with a VOD system, we figured out the behavior of video servers and

obtained some feedbacks.

	 For a large-scale server, storage and retrieval in a parallel server have been

proposed including data placement, retrieval scheduling, and communica-

tion scheduling. By the proposed scheduling algorithms, disk bandwidth in

a parallel server can be fully utilized and communication between nodes in

a parallel server is guaranteed conflict-free.

	 Given a large number of nodes, the configuration of a large-scale server has

been described. In other words, we addressed how to cluster such nodes

into server clusters (parallel servers). The analysis indicated that clients ex-

perience relatively large service latency when the number of server clusters

is small, that is, the size of a server cluster is large. On the other hand,

when the number of server clusters is large, client requests are not balanced

among server clusters,i.e. there exist hot spots although popular videos are

replicated. The tradeoff of large versus small clusters provides a basis for

the design of the most effective server configuration.

	 A queueing analysis for the large-scale video server has been conducted

with a server cluster being an independent service entity. An open queueing

network model has been developed which consists of M/M/1 queues and

Poisson input processes. From the model, we derived the packet loss proba-

bility that a packet request is not serviced within its deadline. The queueing

115

analysis revealed, as can be expected, that the parameters which greatly af-

fect the performance of large-scale video servers are the disk bandwidth and

the access network bandwidth. The proper combination of them should be

derived.

	 The benefits of employing multi-resolution video have been identified: het-

erogeneous client support, storage efficiency, adaptive service, and interac-

tive operations support.

	 For the purpose of modeling multi-resolution video, we proposed az-level

multi-resolution video stream model. In the model, each video stream can

be provided withz levels of quality and the QoS parameter is represented

by the number of components in a segment. We also described how to build

the proposed multi-resolution video stream model using the current scal-

able video compression techniques including DCT-based scheme, subband

schemes, fractal-based schemes, and object-based schemes.

	 We addressed the issues on storage and retrieval of multi-resolution video.

The placement scheme exploits both concurrency and parallelism offered by

striping data across disks and achieves the disk load balancing during any

resolution video service. The deterministic access property of the place-

ment scheme also permits the retrieval scheduling to be performed on each

disk independently and to support interactive operations simply by recon-

structing the input parameters of the scheduler. In addition, we developed

an efficient admission control algorithm which precisely estimates the ac-

tual disk workload for the given resolution services. The proposed schemes

have been validated through simulation studies with trace data generated

from actual scalable video streams.

116

	 Based on storage and retrieval schemes of multi-resolution video, a multi-

resolution video manager (MRVman) has been developed. A prototype of

the multi-resolution VOD system exhibited that the visual quality of multi-

resolution playback and fastforward playback is acceptable.

Throughout this thesis, we have assumed that disk storage and retrieval of

video data are the major bottleneck on the performance of video servers. Another

system resource, or buffer memory should be effectively managed and the hier-

archical storage management of memory, disk, and tape storage should be also

treated carefully. The effective management of them remains to be solved in the

future.

117

Appendix A

Proof of Theorem 5.1

Proof: i) z � d: Without loss of generality, we assume thatStartDiskV � �.

Then, forV � fCs
c j � � s � l� � � c � zg, Vi�k is given from Eq. (5.1) and

(5.2) as follows:

Vi�k � fCs
c j � � s � l� � � c � k� c � �i� s�dg� (A.1)

Therefore,jVi�kj is the number ofs’s, � � s � l, which satisfies

�i� s�d � k� (A.2)

Let s � x � d� y, �� � x �
j
l
d

k
, � � y � d� and apply it to Eq. (A.2).

�i� x � d� y�d � k (A.3)

If l � m � d, for eachx, � � x �
j
l
d

k
, the number ofy’s, � � y � d, which

satisfies Eq. (A.3) isk. If l �� m � d, for eachx, � � x �
j
l
d

k
, the number ofy’s is

k and forx �
j
l
d

k
, the number ofy’s is
, � �
 � d. Hence,jVi�kj �

j
l
d

k
�k�

118

�� �
 � d�.

ii) z � d: This is equivalent to the case wherez � � d andk � z. From the result

of case i),jVi�kj �
j
l
d

k
� k �
 �� �
 � d�.

iii) z � d: From Eq. (5.1) and (5.2),

Vi�k � fCs
c j � � s � l� � � c � k� c � �i� s�d � a � d� � � a �

�
z

d

	
g� (A.4)

If k � d, this case is equivalent to case i) because each disk retrieves one compo-

nent in a segment. Ifk � d, each disk retrieves one or more components in a seg-

ment. From Eq. (A.4),l �
j
k
d

k
componentsfCs

c j � � s � l� c � �i�s�d�a �d� � �
a �

j
k
d

k
g are retrieved and additional componentsfCs

c j � � s � l� c � �i�s�d�j
k
d

k
�d � kg are also retrieved. According to the result of case i), the number of the

additional components is
j
l
d

k
��k�

j
k
d

k
�d��

�

�� �

�

� d�. By integrating two

terms, we can obtain the total number of components,
j
l
d

k
� k �
 �� �
 � d�.

�

119

Bibliography

[Abra98] E. L. Abram-Profeta and K. G. Shin, “Providing unrestricted VCR

functions in multicast video-on-demand servers,” InProc. of Inter-

national Conference on Multimedia Computing and Systems, pages

66–75, 1998.

[Agne96] P. W. Agnew and A. S. Kellerman,Distributed Multimedia: Tech-

nologies, Applications, and Opportunities in the Digital Information

Industry, Addison-Wesley Publishing Company, 1996.

[Ahn95] S. Ahn, Y. Lee, J. Cho, T. Kim, and H. Shin, “Design and implemen-

tation of a real-time storage server for digital audio/video using disk

array technology,”Journal of KISS(C), 1(1):35–45, 1995.

[Alle90] A. O. Allen, Probability, Statistics, and Queueing Theory with Com-

puter Science Applications, 2nd Ed., Academic Press, Inc., 1990.

[Ande92] D. P. Anderson, Y. Osawa, and R. Govindan, “A file system for con-

tinuous media,”ACM Transactions on Computer Systems, 10(4):311–

337, 1992.

120

[Andl96] P. K. Andleigh and K. Thakrar,Multimedia Systems Design, Prentice

Hall, 1996.

[Beck98] C. J. Beckmann, A. A. Moin, and S. Nog, “Bandwidth reservation

with selectable bit-rate streams,”Multimedia Systems, 6(4):219–231,

1998.

[Bern93] P. J. Bernhard, “Bounds on the performance of message routing

heuristics,” IEEE Transactions on Computers, 42(10):1253–1256,

1993.

[Bers94] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, “Staggered

striping in multimedia information systems,” InProc. of ACM SIG-

MOD ’94, 1994.

[Bers95] S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, “Staggered

striping: A flexible technique to display continuous media,”Multi-

media Tools and Applications, 1(2):127–148, 1995.

[Bogd94] A. Bogdan, “Multiscale (intrer/intra-frame) fractal video coding,” In

Proc. of IEEE International Conference on Image Processing, 1994.

[Bolo96] W. J. Bolosky and et. al, “The Tiger video fileserver,” InProc. of

International Workshop on Network and Operating System Support

for Digital Audio and Video, pages 97–104, 1996.

[Bufo94] J. F. K. Buford, Multimedia Systems, Addison-Wesley Publishing

Company, 1994.

121

[Cata95] V. Catania, A. Puliafito, S. Riccobene, and L. Vita, “Design and

performance analysis of a disk array system,”IEEE Transactions on

Computers, 44(10):1236–1247, 1995.

[Chan94] E. Chang and A. Zakhor, “Scalable video data placement on paral-

lel disk arrays,” InProc. of IS&T/SPIE International Symposium on

Electronic Imaging: Science and Technology, pages 208–221, 1994.

[Chan96a] E. Chang and A. Zakhor, “Cost analyses for VBR video servers,”

IEEE Multimedia Magazine, 4(3):56–71, 1996.

[Chan96b] E. Chang,Storageand Retrieval of Compressed Video, PhD thesis,

University of California at Berkeley, 1996.

[Chan97] E. Chang and A. Zakhor, “Disk-based storage for scalable video,”

IEEE Transactions on Circuits and Systems for Video Technology,

7(5):758–770, 1997.

[Chen93] M.-S. Chen, D. D. Kandlur, and P. S. Yu, “Optimization of the

grouped sweeping scheduling (GSS) with heterogeneous multimedia

streams,” InProc. of ACM Multimedia ’93, pages 235–242, 1993.

[Chen94] M.-S. Chen, D. D. Kandlur, and P. S. Yu, “Support for fully inter-

active playout in a disk-array-based video server,” InProc. of ACM

Multimedia ’94, pages 391–398, 1994.

[Chen95] M.-S. Chen, D. D. Kandlur, and P. S. Yu, “Using rate staggering

to store scalable video data in a disk-array-based video server,” In

Proc. of IS&T/SPIE Symposium on Electronic Imaging Conference

on Multimedia Computing and Networking, pages 338–345, 1995.

122

[Chen96] M.-S. Chen and D. D. Kandlur, “Stream conversion to support in-

teractive video playout,” IEEE Multimedia Magazine, 3(2):51–58,

1996.

[Cher95] A. L. Chervenak, D. A. Patterson, and R. H. Katz, “Choosing the best

storage system for video service,” InProc. of ACM Multimedia ’95,

pages 109–119, 1995.

[Chia94] T. Chiang and D. Anastassiou, “Hierarchical coding of digital televi-

sion,” IEEE Communications Magazine, 32(5):38–45, 1994.

[Chiu93] T.-C. Chiueh and R. H. Katz, “Multi-resolution video representation

for parallel disk arrays,” InProc. of ACM Multimedia ’93, pages

401–409, 1993.

[Cho94] J. Cho and H. Shin, “A scheduling method for real-time multime-

dia storage server using disk arrays,”Journal of KISS, 21(11):1981–

1989, 1994.

[Cho95] J. Cho, T. Kim, Y. Kim, M. Sung, and H. Shin, “Performance analysis

of disk arrays for storage architecture of multimedia servers,” InProc.

of the 22nd KISS Fall Conference, pages 823–826, 1995.

[Cho96] J. Cho, T. Kim, Y. Kim, M. Sung, and H. Shin, “A disk array manager

on microkernel environment for video servers,” InProc. of the 23rd

KISS Spring Conference, pages 335–338, 1996.

[Cho97a] J. Cho and H. Shin, “Scheduling algorithms in a large-scale VOD

server,” InProcs. of the IPPS’97 Workshop on Parallel Processing

and Multimedia, pages 17–25, 1997.

123

[Cho97b] J. Cho and H. Shin, “Queueing model of a large-scale VOD server,”

In Proc. of the 24th KISS Spring Conference, pages 383–386, 1997.

[Cho97c] J. Cho and H. Shin, “Design issues for multimedia information

servers in mobile computing environment,” InProc. of the 4th In-

ternational Workshop on Mobile Multimedia Communications, pages

336–339, 1997.

[Cho97d] J. Cho and H. Shin, “Heuristic scheduling for multimedia streams

with firm deadlines,” InProcs. of the 4th International Workshop on

Real-Time Computing Systems and Applications, pages 67–72, 1997.

[Cho97e] J. Cho and H. Shin, “Scheduling video streams in a large-scale video-

on-demand server,”Parallel Computing, 23(12):1743–1755, 1997.

[Cho98a] J. Cho and H. Shin, “Performance analysis of a large-scale video-on-

demand server using queueing model,”Journal of KICS, 23(1):155–

161, 1998.

[Cho98b] J. Cho and H. Shin, “MRVman: A multi-resolution video manager for

MPEG-1 streams,” InProc. of KISS SIGCS Fall Conference, pages

237–245, 1998.

[Cho98c] J. Cho and H. Shin, “Temporal multi-resolution video playback based

on reconstructing MPEG-1 streams,”Journal of KISS(C), 4(4):439–

448, 1998.

[Cho99a] J. Cho and H. Shin, “A multi-resolution video scheme for multime-

dia information servers in mobile computing environment,” InProc.

124

of International Conference on Telecommunications, pages 388–392,

1999.

[Cho99b] J. Cho and H. Shin, “A design framework for multi-resolution video

servers,”submitted for publication, 1999.

[Chun96] S. M. Chung, Multimedia Information Storage andManagement,

Kluwer Academic Publishers, 1996.

[Coul94] G. Coulson, G. S. Blair, P. Robin, and D. Shepherd, “Supporting con-

tinuous media applications in a micro-kernel environment,” Technical

report, Lancaster University Computing Dept., Internal Report Num-

ber MPG-94-16, 1994.

[Dan95] A. Dan, D. Dias, R. Mukherjee, D. Sitaram, and R. Tewari, “Buffer-

ing and caching in large-scale video servers,” InProc. of IEEE Com-

pCon ’95, pages 217–224, 1995.

[Dan97] A. Dan, E. Eshel, J. Hollan, R. Kenneson, M. Kienzle, J. McAssey,

R. Rose, D. Sitaram, and W. Tetzlaff, “The research server complex

manager for large-scale multimedia servers,” Technical report, IBM

Research, No. RC20705, 1997.

[Delg94] L. Delgrossi, C. Halstrick, D. Hehmann, R. G. Herrtwich, O. Krone,

J. Sandvoss, and C. Vogt, “Media scaling in a multimedia communi-

cation system,”Multimedia Systems, 2(4):172–180, 1994.

[Dey94] J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and D. Towsley, “Provid-

ing VCR capabilities in large-scale video servers,” InProc. of ACM

Multimedia ’94, pages 25–32, 1994.

125

[Doga93] Y. N. Doganata and A. N. Tantawi, “A video server cost/performance

estimator tool,” Multimedia Tools and Applications, 1(2):127–148,

1993.

[Free95] C. S. Freedman and D. J. DeWitt, “The SPIFFI scalable video-on-

demand system,” InProc. of 1995 ACM SIGMOD, pages 352–363,

1995.

[Gall91] D. L. Gall, “MPEG: A video compression standard for multimedia

applications,”Communications of ACM, 34(4):46–58, 1991.

[Gemm92] D. J. Gemmell and S. Christodoulakis, “Principles of delay-sensitive

multimedia data storage and retrieval,”ACM Transactions on Infor-

mation Systems, 10(1):51–90, 1992.

[Gemm95] D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, and L. A.

Rowe, “Multimedia storage servers: A tutorial,”IEEE Computer

Magazine, 28(5):40–49, 1995.

[Ghan93] S. Ghanderharizadeh and L. Ramos, “Continuous retrieval of multi-

media data using parallelism,”IEEE Transactions on Knowledge and

Data Engineering, 5(4):658–669, 1993.

[Ghan94] S. Ghandeharizadeh and C. Shahabi , “On multimedia repositories,

personal computers, and hierarchical storage systems,” InProc. of

ACM Multimedia ’94, pages 407–416, 1994.

[Gros97] W. I. Grosky, R. Jain, and R. Mehrotra,The Handbook of Multimedia

Information Management, Prentice Hall, 1997.

126

[Han95] C.-C. Han and K. G. Shin, “Scheduling MPEG-compressed video

streams with firm deadline constraints,” InProc. of ACM Multimedia

’95, pages 411–422, 1995.

[Hamd95] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment

technique for streams with�m� k�-firm deadlines,” IEEE Transac-

tions on Computers, 44(12):1443–1451, 1995.

[Harr93] P. G. Harrison and N. M. Patel,Performance Modeling of Communi-

cation Networks and Computer Architectures, Addison-Wesley Pub-

lishing Company, 1993.

[Hask93] R. L. Haskin, “The Shark continuous-media file server,” InProc. of

Spring COMPCON ’93, pages 12–15, 1993.

[Heyb96] A. Heybey, M. Sullivan, and P. England, “Calliope: A distributed,

scalable multimedia server,” InProc. of USENIX 1996 Annual Tech-

nical Conference, 1996.

[Hunt] J. Hunter, V. Witana, and M. Antoniades, “A review of video

streaming over the internet,” White paper,http://www.

dstc.edu.au/RDU/staff/jane-hunter/video-

streaming. html.

[Huyn94] K. D. Huynh and T. M. Khoshgoftaar, “Performance analysis of ad-

vanced I/O architecture for PC-based video servers,”Multimedia Sys-

tems, 2(1):36–50, 1994.

[Hwan93] K. Hwang,Advanced Computer Architecture: Parallelism, Scalabil-

ity, Programmability, McGraw-Hill, Inc., 1993.

127

[ISOa] ISO/IEC 11172,Information Technology - Coding of Moving Pictures

and Associated Audio for Digital StorageMedia at Up to about 1.5

Mbits/s.

[ISOb] ISO/IEC 13818,Information Technology - Generic Coding of Moving

Pictures and Associated Audio.

[Kand93] D. D. Kandlur, M.-S. Chen, and Z.-Y. Shae, “Design and a multime-

dia storage server,” IBM Research Report, RC 18158, 1993.

[Kane96] H. Kaneko and J. A. Stankovic, “Integrating scheduling of multime-

dia and hard real-time tasks,” InProc. of the 17th Real-Time Systems

Symposium, pages 206–217, 1996.

[Keet93] K. Keeton and R. H. Katz, “The evaluation of video layout strategies

on a high-bandwidth file server,” InProc. of International Work-

shop on Network and Operating System Support for Digital Audio

and Video, pages 237–248, 1993.

[Kim97a] T. Kim, J. Cho, M. Sung, S. Jung, K. Kim, and H. Shin, “Design and

implementation of a scalable multi-purpose multimedia-on-demand

system,” InProc. of the 24nd KISS Fall Conference, pages 519–522,

1997.

[Kim97b] J.-W. Kim, Y.-U. Lho, and K.-D. Chung, “An efficient video block

placement scheme on VOD server based on multi-zone recording

disks,” In Proc. of International Conference on Multimedia Com-

puting and Systems, pages 29–36, 1997.

128

[Klei75] L. Kleinrock, Queueing Systems, Volume I, John Wiley & Sons, Inc.,

1975.

[Kwon97] T.-G. Kwon, Y. Choi, and S. Lee, “Disk placement for arbitrary-

rate playback in an interactive video server,”Multimedia Systems,

5(4):271–281, 1997.

[Lau97] S.-W. Lau and J. C. S. Lui, “Scheduling and data layout policies for

a near-line multimedia storage architecture,”Multimedia Systems,

5(5):310–323, 1997.

[Laur94] A. Laursen, J. Olkin, and M. Porter, “Oracle media server: Providing

consumer based interactive access to multimedia data,” InProc. of

ACM SIGMOD 94, pages 194–201, 1994.

[Lawr75] D. H. Lawrie, “Access and alignment of data in an array processor,”

IEEE Transactions on Computers, 24(12):1145–1155, 1975.

[Laza94] M. S. Lazar and L. T. Bruton, “Fractal block coding of digital video,”

IEEE Transactions on Circuits and Systems for Video Technology,

4(3):297–308, 1994.

[Lee97] H.-J. Lee and D. H. C. Du, “The effect of disk scheduling scheme on

a video server for supproting quality MPEG video accesses,” InProc.

of International Conference on Multimedia Computing and Systems,

pages 194–201, 1997.

[Lee98] J. Y. B. Lee, “Parallel video server: A tutorial,”IEEE Multimedia

Magazine, 5(2):20–28, 1998.

129

[Lian97] J. Liang, “Highly scalable image coding for multimedia applica-

tions,” In Proc. of ACM Multimedia ’97, pages 11–19, 1997.

[Litt93] T. D. C. Little and D. Venkatesh, “Probabilistic assignment of movies

to storage devices in a video-on-demand system,” InProc. of the

International Workshop on Network and Operating System Support

for Digital Audio and Video, pages 213–224, 1993.

[Loug92] P. Lougher and D. Shepherd, “The design and implementation of a

continuous media storage server,” InProc. of International Work-

shop on Network and Operating System Support for Digital Audio

and Video, pages 63–74, 1992.

[Loug93] P. K. Lougher,The Design of a StorageServer for Continuous Media,

PhD thesis, Department of Computing, Lancaster University, 1993.

[Mac87] M. H. MacDougall,Simulating Computer Systems: Techniques and

Tools, MIT Press, 1987.

[Maka97] D. Makaroff, G. Neufeld, and N. Hutchinson, “An evaluation of VBR

disk admission algorithms for continuous media file servers,” InProc.

of ACM Multimedia ’97, pages 143–154, 1997.

[Mc96] S. R. McCanne,Scalable Compression and Transmission of Internet

Multicast Video, PhD thesis, University of California at Berkeley,

1996.

[Mour96] A. N. Mourad, “Issues in the design of a storage server for video-on-

demand,”Multimedia Systems, 4(2):70–86, 1996.

130

[Mok96] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” In

Proc. of the 17th Real-Time Systems Symposium, pages 22–29, 1996.

[Neuf96] G. Neufeld, D. Makaroff, and N. Hutchinson, “Design of a variable

bit rate continuous media file server for an ATM network,” InProc. of

IS&T/SPIE Multimedia Computing and Networking, pages 370–380,

1996.

[Ng96] R. T. Ng and J. Yang, “An analysis of buffer sharing and prefetching

techniques for multimedia systems,”Multimedia Systems, 4(2):55–

69, 1996.

[Ozde95] B. Ozden, R. Rastogi, and A. Silberschatz, “Research issues in mul-

timedia storage servers,”ACM Computing Surveys, 1995.

[Ozde96] B. Ozden, R. Rastogi, and A. Silberschatz, “Buffer replacement al-

gorithms for multimedia storage systems,” InProc. of International

Conference on Multimedia Computing and Systems, pages 172–180,

1996.

[Paek95] S. Paek, P. Bocheck, and S. F. Chang, “Scalable MPEG2 video

servers with heterogeneous QoS on parallel disk arrays,” InProc. of

International Workshop on Network and Operating Systems Support

for Digital Audio and Video, pages 363–374, 1995.

[Paek96] S. Paek and S.-F. Chang, “Video server retrieval scheduling for vari-

able bit rate scalable video,” InProc. of Internaltional Conference on

Multimedia Computing and Systems, pages 108–112, 1996.

131

[Pan98] H. Pan, L. H. Ngoh, and A. A. Lazar, “A buffer-inventory-based

dynamic scheduling algorithm for multimedia-on-demand servers,”

Multimedia Systems, 6(2):125–136, 1998.

[Patt88] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant

arrays of inexpensive disks (RAID),” InProc. of ACM SIGMOD,

pages 109–116, 1988.

[Pete85] J. L. Peterson and A. Silberschatz,Operating System Concepts, 2nd

Ed., Addison-Wesley Publishing Company, 1985.

[QNX93] “QNX System architecture,”QNX Operating Systems Manual, QNX

Software Systems Ltd., 1993.

[Rang91a] P. V. Rangan and H. M. Vin, “Designing file systems for digital video

and audio,” InProc. of ACM Symposium on Operating Systems Prin-

ciples, pages 69–79, 1991.

[Rang91b] P. V. Rangan, W. A. Burkhard, W. Bowdidge, and et. al, “A testbed

for managing digital video and audio storage,” InProc. of USENIX

Summer, pages 199–208, 1991.

[Rang92] P. V. Rangan, H. M. Vin, and S. Ramanathan, “Designing an on-

demand multimedia service,” IEEE Communications Magazine,

30(7):56–65, 1992.

[Rang93] P. V. Rangan and H. M. Vin, “Efficient storage techniques for digital

continuous multimedia,”IEEE Transactions on Knowledge and Data

Engineering, pages 564–573, 1993.

132

[Redd93] A. L. N. Reddy and J. Wyllie, “Disk scheduling in a multimedia I/O

system,” InProc. of ACM Multimedia ’93, pages 225–233, 1993.

[Redd95] A. L. N. Reddy, “Scheduling and data distribution in a multiprocessor

video server,” InProc. of International Conference on Multimedia

Computing and Systems, pages 256–263, 1995.

[Redd97] A. L. N. Reddy, “Evaluation of caching strategies for an internet

server,” InProc. of International Conference on Multimedia Com-

puting and Systems, pages 118–125, 1997.

[Rosa96] J. M. D. Rosario and G. Fox, “Constant bit rate network transmission

of variable bit rate continuous media in video-on-demand servers,”

Multimedia Tools and Applications, 2(3):215–232, 1996.

[Rose95] O. Rose, “Statistical properties of MPEG video traffic and their im-

pact on traffic modeling in ATM systems,” Technical report, Univer-

sity of Wuerzburg, Institute of Computer Science Research, Report

No. 101, 1995.

[Ruem94] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”

IEEE Computer Magazine, 27(3):17–28, 1994.

[Shen95] P. J. Shenoy and H. M. Vin, “Efficient support for scan operations

in video servers,” InProc. of ACM Multimedia ’95, pages 131–140,

1995.

[Shen98] P. J. Shenoy and H. M. Vin, “Efficient support for interactive op-

erations in multi-resolution video servers,”Multimedia Systems, ac-

cepted for publication, 1998.

133

[Sriv97] A. Srivastava, A. Kumar, and A. Singru, “Design and analysis of a

video-on-demand server,”Multimedia Systems, 5(4):238–254, 1997.

[Tan96] W. Tan, E. Chang, and A. Zakhor, “Real-time software implementa-

tion of scalable video codec,” InProc. of International Conference

on Image Processing, pages 17–20, 1996.

[Taub94] D. Taubman and A. Zakhor, “Multirate 3-D subband coding of

video,” IEEE Transactions on Image Processing, 3(5):572–588,

1994.

[Tind93] K. Tindell, A. Burns, and R. Davis, “Fixed priority scheduling of hard

real-time multimedia disk traffic,” InProc. of Workshop on the Role

of Real-Time in Multimedia/Interactive Computing Systems, 1993.

[Tewa96a] R. Tewari, R. Mukherjee, D. M. Dias, and H. M. Vin, “Design

and performance tradeoffs in clustered video servers,” InProc. of

the International Conference on Multimedia Computing and Systems,

pages 144–150, 1996.

[Tewa96b] R. Tewari, R. King, D. Kandlur, and D. M. Dias, “Placement of mul-

timedia blocks on zoned disks,” InProc. of IS&T/SPIE Multimedia

Computing and Networking, 1996.

[Toba93] F. A. Tobagi, J. Pang, R. Baird, and M. Gang, “Streaming RAIDTM

- a disk array management system for video files,” InProc. of ACM

Multimedia ’93, pages 393–400, 1993.

134

[Tong98] S.-R. Tong and Y.-F. Huang, “Study on disk zoning for video servers,”

In Proc. of International Conference on Multimedia Computing and

Systems, pages 86–95, 1998.

[Vin93] H. M. Vin and P. V. Rangan, “Designing a multiuser HDTV stor-

age server,” IEEE Journal on Selected Areas in Communications,

11(1):153–164, 1993.

[Vin94] H. M. Vin, P. Goyal, A. Goyal, and A. Goyal, “A statistical admission

control algorithm for multimedia servers,” InProc. of ACM Multime-

dia ’94, pages 33–40, 1994.

[Vin95] H. M. Vin, S. S. Rao, and P. Goyal, “Optimizing the placement of

multimedia objects on disk arrays,” InProc. of International Confer-

ence on Multimedia Computing and Systems, pages 158–165, 1995.

[Wang96] J. Z. Wang, K. A. Hua, and H. C. Young, “SEP: A space efficient pi-

plelining technique for managing disk buffers in multimedia servers,”

In Proc. of International Conference on Multimedia Computing and

Systems, pages 598–607, 1996.

[Wang97a] Q. Wang and M. Ghanbari, “Scalable coding of very high resolution

video using the virtual zerotree,”IEEE Transactions on Circuits and

Systems for Video Technology, 7(5):719–727, 1997.

[Wang97b] Y. Wang, J. C. L. Liu, D. H. C. Du, and J. Hsieh, “Efficient video

file allocation schemes for video-on-demand services,”Multimedia

Systems, 5(5):283–296, 1997.

135

[Wang97c] J. Z. Wang and K. A. Hua, “A bandwidth management technique

for hierarchical storage in large-scale multimedia servers,” InProc.

of International Conference on Multimedia Computing and Systems,

pages 261–268, 1997.

[Wu80] C. L. Wu and T. Y. Feng, “On a class of multistage interconnection

networks,” IEEE Transactions on Computers, 29(8):694–702, 1980.

[Wu96] K.-L. Wu and P. S. Yu, “Consumption-based buffer management for

maximizing system throughput of a multimedia system,” InProc.

of International Conference on Multimedia Computing and Systems,

pages 161–171, 1996.

[Wu97] M.-Y. Wu and W. Shu, “Scheduling for interactive operations in par-

allel video servers,” InProc. of International Conference on Multi-

media Computing and Systems, pages 178–185, 1997.

[Wu98] K.-L. Wu and P. S. Yu, “Increasing multimedia system throughput

with consumption-based buffer management,”Multimedia Systems,

6(6):421–428, 1998.

[Yu92] P. S. Yu, M.-S. Chen, and D. D. Kandlur, “Design and analysis of a

grouped sweeping scheme for multimedia storage management,” In

Proc. of International Workshop on Network and Operating System

Support for Digital Audio and Video, pages 38–49, 1992.

136

