EFFICIENT DATA STORAGE AND RETRIEVAL
TECHNIQUES FOR HIGH-PERFORMANCE VIDEO
SERVERS

By
Jinsung Cho

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
SEOUL NATIONAL UNIVERSITY
SEOUL 151-742, KOREA
DECEMBER 1999

© Copyright by Jinsung Cho, 2000

SEOUL NATIONAL UNIVERSITY
DEPARTMENT OF
COMPUTER ENGINEERING

The undersigned hereby certify that they have read
and recommend to the Faculty of Graduate Studies for
acceptance a thesis entitledEfficient Data Storage and
Retrieval Techniques for High-performance Video Servers’
by Jinsung Cho in partial fulfilment of the requirements for the

degree oDoctor of Philosophy.

Dated: December 1999

Chief Examiner:

Kim, Chong Sang

Research Supervisar:

Shin, Heonshik

Examing Committee:
Choi, Yanghee

Yeom, Heon Young

Choi, Chang Ryeol

To my family with love and respect

Abstract

During the past decade we have paid great attention to a video-on-demand service
which provides the combined facilities of a video rental store over high-speed net-
works. The realization of such services requires the development of video servers
that support efficient mechanisms for storing and retrieving video data. The study
on video servers is highly motivated by the fact that video-on-demand services are
becoming increasingly important and widespread in the entertainment, education,
and telecommunications industries. In this thesis we design and/or implement
video servers in various environments by providing efficient storage and retrieval

of video data.

This thesis consists of three main parts: storage and retrieval in a single server,
in a large-scale server, and in a multi-resolution video server. In the first part, we
begin by designing and implementing a small-scale single server. The large size
and bandwidth of video data require a single server approach to adopt disk arrays
for its storage subsystem. Through a simple performance analysis for disk arrays,

a prototype of the small-scale video server is developed.

The second part of this thesis explores the issue on designing a large-scale

video server. Limitations in scalability of the single server approach lead to a

large number of such nodes connected to each other. First, given a large number
of nodes, we describe how to cluster them into parallel servers. Next, storage
and retrieval in a parallel server are presented including data placement, retrieval
scheduling, and communication scheduling between nodes. The data placement is
based on the block-striping technique verified in the single server and, by the pro-
posed scheduling algorithms, disk bandwidth in a parallel server can be fully uti-
lized and communication between nodes in a parallel server is guaranteed conflict-
free. In addition, a queueing model is proposed with a parallel server being an in-

dependent service entity in the large-scale server and its performance is analyzed.

The final part addresses the issue on storage and retrieval of multi-resolution
video. To this end, we describe a design framework for multi-resolution video
servers and implement a prototype. First, we propose a multi-resolution video
stream model which can be implemented by various scalable compression tech-
niques. Second, given the proposed stream model, we devise a data placement
scheme to store scalable video data across disks in the server. The scheme ex-
ploits both concurrency and parallelism offered by striping data across the disks
and achieves the disk load balancing during any resolution video service. Next,
the retrieval of multi-resolution video is described. The deterministic access prop-
erty of the placement scheme permits the retrieval scheduling to be performed
on each disk independently and to support interactive operations simply by re-
constructing the input parameters of the scheduler. We also present an efficient
admission control algorithm which precisely estimates the actual disk workload
for the given resolution services. In addition, through the implementation of the

multi-resolution video manager, we validate the proposed scheme.

Keywords. video server architecture, storage and retrieval, disk arrays, retrieval
scheduling, communication scheduling, multi-resolution video, interactive opera-

tions, admission control

Table of Contents

Abstract

1 Introduction
1.1 Motivationand objectiveo
1.2 Research contribution.,
1.2.1 Storage and retrieval ina singleserver...

1.2.2 Storage and retrieval in a large-scale server

1.2.3 Storage and retrieval in a multi-resolution video server . .

1.3 Organization. i

2 Background
2.1 Researchissuesonvideoservers...
2.1.1 Basicdesignissues
2.1.2 Furtherissues.

2.2 Relatedwork.

2.2.1 Storage and retrieval ina single server... 14

2.2.2 Storage and retrieval in a large-scale server 16
2.2.3 Storage and retrieval in a multi-resolution video server . . 20
3 Storageand retrieval in asingle server 23
3.1 Systemmodel 24
3.2 Performance analysis ofdiskarrays 25
3.3 Simulationstudies. Lo 29
3.4 Implementation of a disk array manager: DAman 34
3.4.1 Overallarchitecture 35
3.4.2 Empiricalevaluation 39
4 Storageand retrieval in alarge-scale server 45
4.1 Systemmodel 46
4.2 Storage and retrieval in a parallel server 49
42.1 Dataplacement 50
4.2.2 Retrievalscheduling 52
4.2.3 Communicationscheduling 56
4.3 Configuration of a large-scaleserver B9
4.4 Queueing analysis of alarge-scaleserver 64
4.4.1 Queueingmodel 65
4.4.2 Performanceanalysis 68

5 Storageand retrieval in a multi-resolution video server 73

51 Systemmodel 74
5.1.1 Multi-resolution video streammodel 74
51.2 Servermodel 78

5.2 Data placement for multi-resolutionvideo 79

5.3 Data retrieval for multi-resolutionvideo 86
5.3.1 Support for interactive operations 88
5.3.2 Admissioncontrol L. 90

5.4 Experimental evaluation 93
5.4.1 Diskloadbalancing. 94
5.4.2 Admissioncontrol 97

5.5 Implementation of a multi-resolution video manager: MRVman . 103

5.5.1 Overallarchitecture 104
5.5.2 Multi-resolution video file system 105
5.5.3 Multi-resolution video on-demand system 108
5.5.4 Empiricalevaluation 109

6 Conclusions 114

A Proof of Theorem 5.1 118

Bibliography 120

Vi

List of Figures

3.1 Architecture ofasingleserver 24
3.2 Relationship betweén, c;peaq @NAN L oL 28
3.3 Simulationmodel Lo o 30
3.4 Comparison of striping policies 31
3.5 Effect of the number of disks (AID5,= 36KB) 33

3.6 Comparison of placement schemes (AIRS; 36 KB) 33

3.7 Overall architectureof DAman 35
3.8 DAman file systemstructure, 36
3.9 Run-timelibrariesforDAman 37
3.10 Experimentmodel oo 39
3.11 Comparison of striping policies (4 disks) 41

Vii

3.12 Comparison of striping policies (2disks) 41
3.13 Comparison between no striping and AID5 (4 disks)

3.14 Effect of the number of disks (AID5) 43
4.1 Configuration of a large-scale videoserver 47
4.2 Architecture of a parallel server (servercluster) 48
4.3 Anexample ofdataplacement 51
4.4 A scenario of simple round scheduling in a storage node
4.5 A scenario of efficient round scheduling in a storage node
4.6 Effectof theretrieval scheduling... 55
4.7 Dataflowinaparallelserver 58
4.8 Problem description on the configuration of a large-scale server . .
4.9 Number of clients not serviced (worstcase) 62
4.10 Average utilization of server clusters (worstcase)

4.11 Average utilization of server clusters (averagecase)
4.12 Average waiting time (averagecase) 64
4.13 Queueing model of a large-scaleserver 66
4.14 Validation of queueingmodel 69

viii

43

53

54

59

62

63

4.15 Effect of disk and network bandwidth 70

4.16 Effectofread-ahead... 71
4.17 Effectofdatablocksize. 71
5.1 z-level multi-resolution video streemmodel 75
5.2 Architecture of multi-resolutionvideoserver 78
5.3 Striping strategies: concurrency vs. parallelism 81
5.4 An example of data placement for multi-resolution video 84
55 Scheduleratdisk 87
5.6 Distribution of disk workloads for a given resolution service . . . 95
5.7 Distribution of disk workload for 300 clients 96
5.8 Estimation with existingschemes 98
5.9 Anexample of the 3rd level resolution service 99
5.10 Estimation with the proposed scheme 101
5.11 Effect of the requestscheduling. 102
5.12 Overall architecture of MRVman... 104
5.13 Data placementinMRVman 105
5.14 MRVman file system structure 106

iX

5.15 Run-time libraries for MRVman

5.16 Client window in the prototype

List of Tables

3.1

3.2

3.3

3.4

4.1

4.2

4.3

5.1

5.2

5.3

5.4

Disk parameters used in the simulation (HP 97560) 31
The proposed storage architecture for a single server 34
UtilitiesforDAman 38
Executiontime of DAmandfs) 40
Parameters used in the simulation. 60

The alternatives in the configuration 61
Parameters used intheanalysis..... 68
Advantages of the proposed data placementscheme 83
Average bit rate (Mbps) of each resolution level for trace data . . . 94
UtilitiesforMRVman. 108
Executiontime of MRVmanfs) 110

Xi

5.5

5.6

5.7

5.8

5.9

Effect on storage overhead and retrieval time of logical block size 111

Effect of the numberofdisks 111
Effectof videoresolution 112
Effect of multiplestreams 112
Number of disk blocks retrieved in each disk{1000) 113

Xii

Chapter 1

| ntroduction

1.1 Motivation and objective

Recent advances in computer technology and demands of video, audio, and text
integration services have provided driving forces behind the emergence of vari-
ous multimedia applications[Agne96, Bufo94]. Among them, we have paid great
attention to a video-on-demand (VOD) service which provides the combined fa-
cilities of a video rental store over high-speed networks. VOD services are be-
coming increasingly important and widespread in the entertainment, education,
and telecommunications industries [AndI96, Chan96b]. The architecture for these
services consists of video servers connected to client sites via high-speed network.
Clients can retrieve video streams from the server for real-time playback. Further-
more, the access may be interactive because clients are likely to stop, pause, and

resume playback and, in some cases, to perform fastforward or rewind operations.

The realization of such services requires the development of video servers that
support efficient mechanisms for storing and delivering video streams. The fun-
damental problem in developing video servers is that the delivery and playback of
video streams must be performed at real-time rate [Gemm©95]. Unlike other types
of data, video data is characterized by its large size and bandwidth. Although
compressed, a two-hours long MPEG-1 [Gall91] video stream requires 1.5Mbps
bandwidth and 1.3GB storage space. Video servers should support for efficient
storage and retrieval techniques of video data in order to provide such large band-

width and space of storage subsystem for a large number of clients.

The three main categories of data storage today are tape, disk, and memory.
Tape storage is the least expensive and tape drive throughput is also reasonable
at about 1MB/s. However, the latency between accesses to different sessions is
typically on the order of seconds or minutes. This latency is too high to support
multiple independent clients, and as a result, tape drives are limited to one user
at a time. On the other extreme, main memory is very fast and has extremely
low latency, but the cost is about two orders of magnitude higher than disk. A
reasonable compromise between the two extremes is disk-based storage and re-
trieval. In addition, disk arrays, or RAID [Patt88], have been proved to provide
cost-effective storage and high-bandwidth transfer capabilities and are becoming
popular in video-on-demand systems. This thesis targets disk-based data storage

and retrieval for video servers.

The objective of this thesis is to design video servers in various environments
and to evaluate the effectiveness of them through simulation and implementation.
For effectiveness, we define the performance metrics of video serveohasr-

rency, interactivity cost andservice latency Video servers should be able to

provide services foas many concurrent clients as possilkile guaranteeing

their real-time playback requirements. In additioieractive operationsuch as
pause, resume, fastforward, rewind, and slow playback, should be supported with
reasonable cost. Thservice latencypon startup or interactive operations should

be acceptable. In summary this thesis aims at designing video servers that can
service as many clients as possible by fully utilizing the server resources while

providing acceptable interactivity cost and service latency.

1.2 Research contribution

1.2.1 Storageandretrieval in asingle server

Video servers range from a standard PC for small-scale systems to massively par-
allel or distributed computers for large-scale systems [Lee98]. First, we tackle
the problems of designing and implementing a small-scale single server which is
equipped with disk arrays. The single server approach for video servers needs to
adopt disk arrays because video servers are required to provide large storage space

and transmission bandwidth.

A simple performance analysis for disk arrays is conducted through simulation
and the proper storage architecture for a single server is proposed [Cho95]. Based
on the proposed architecture, we implement a software disk array manager which
controls SCSI adapters and SCSI disks [Cho96]. The implementation details are
described and its performance is empirically evaluated and compared with the

simulation result.

On top of the disk array manager, a video server is developed. By integrating
the server with a VOD system implemented in [Ahn95], we figure out the behavior

of video servers and get some feedbacks.

1.2.2 Storageandretrieval in alarge-scale server

The single server approach, however, has limitations in scalability. For the pur-
pose of providing video services for the public, a video server should store thou-
sands of video streams and serve tens of thousands of concurrent clients. For
such a large-scale video server, we focus on the parallel server architecture which

consists of multiple nodes connected by an interconnection network.

First of all, given a large number of nodes, we describe how to cluster such
nodes into parallel servers [Cho97a, Cho97e]. In other words, a large-scale server
consists of multiple parallel servers while a parallel server is comprised of multi-

ple nodes.

Next, storage and retrieval in a parallel server are addressed [Cho97a, Cho97e]
including data placement, retrieval scheduling, and communication scheduling
between nodes. The data placement is based on the block-striping technique
(AID5) validated through the work on single server. By the proposed scheduling
algorithms, disk bandwidth in a parallel server can be fully utilized and commu-

nication between nodes in a parallel server is guaranteed conflict-free.

Then, each parallel server in a large-scale video server provides individual
services for clients. A queueing model is proposed with a parallel server being an

independent service entity and its performance is analyzed [Cho97b, Cho98a]

4

1.2.3 Storage and retrieval in a multi-resolution video server

The final issue of the thesis is to design and implement a video server which
provides multiple resolution video services. A multi-resolution video stream is a
video sequence encoded such that subsets of the full resolution video bit stream
can be decoded to recreate lower resolution video streams. Employing the multi-
resolution video in video servers provides benefits including heterogeneous client
support, storage efficiency, adaptive service, and interactive operations support.
We present a design framework for multi-resolution video servers by describ-
ing multi-resolution stream model, data storage and retrieval of multi-resolution
video, interactive operations support, and admission control [Cho97c, Cho99a,
Cho99b].

First, az-level multi-resolution video stream model is proposed. In the multi-
resolution video stream model, each video stream can be provided \attels
of quality and the QoS parameter is represented by the number of components in
a segment. We also describe how to construct the proposed multi-resolution video

stream model from the current scalable compression techniques.

Second, storage and retrieval of multi-resolution video are explored. The data
placement scheme exploits both of concurrency and parallelism offered by strip-
ing data across disks and achieves the disk load balancing during any resolution
video service. The deterministic access property of the placement scheme per-
mits the retrieval scheduling to be performed on each disk independently and to
support interactive operations simply by reconstructing the input parameters of
input scheduler. We also present an efficient admission control algorithm which

precisely estimates the actual disk workload for the given resolution services.

Finally, we describe implementation experiences of a multi-resolution video
server [Cho98b, Cho98c]. For the quick implementation, we extend the soft-
ware disk array manager mentioned in Subsection 1.2.1 to incorporate the storage
and retrieval of multi-resolution video and employ MPEG-1 streams with existing
hardware decoder for multi-resolution video streams. MPEG-1 streams are recon-
structed into the multi-resolution video stream model in temporal dimension. A
prototype of the multi-resolution VOD system exhibits that the visual quality of

multi-resolution playback and fastforward playback is acceptable.

1.3 Organization

The rest of this thesis is organized as follows.

Chapter 2 gives background for the thesis. Research issues on video servers
are addressed from basics to advanced topics. Related researches on video servers

are also described.

Chapter 3 designs and implements a small-scale single server equipped with
disk arrays. Given the system model, a simple performance analysis for disk
arrays is conducted and implementation details for a software disk array manager

follow.

Chapter 4 tackles the problems of designing a large-scale video server. Storage
and retrieval in a parallel server which consists of multiple nodes are described
including data placement, retrieval scheduling, and communication scheduling

between nodes. Given a large number of nodes, the configuration of a large-scale

server, that is, how to cluster such nodes into parallel servers is also addressed

following a queueing analysis of the large-scale server.

Chapter 5 presents a design framework for multi-resolution video servers by
describing multi-resolution video stream model, data storage and retrieval of multi-
resolution video, interactive operations support, and admission control. The im-
pacts of mobility on video servers are also identified following support for mobile
computing environment of the multi-resolution video server. In addition, a pro-
totype of the multi-resolution video server is developed and its performance is

measured and analyzed.

Finally, Chapter 6 summarizes the results obtained from this thesis with some

concluding remarks.

Chapter 2

Background

2.1 Research issueson video servers

In this section, we introduce various research issues on video servers from basics

to advanced topics. The issues, however, are closely coupled with each other.

2.1.1 Basicdesign issues

A. Guaranteed retrieval of continuous media

Due to its strict timing constraint of continuous media (digital video and au-

dio), early works focus on its guaranteed retrieval and admission control [Rang91a,

Gemm92, Ande92, Loug92, Cho94]. Their works found a framework for de-
signing continuous media servers including round-based scheduling, disk perfor-
mance analysis, admission control strategy, and buffer management. Most of their
works, however, are based on the worst-case disk performance and constant bit

rate streams.

B. Disk scheduling

For improving the disk performance, several works are performed on the disk
head scheduling. An elevator-type or SCAN disk scheduling [Pete85] receives
much attention in the literature [Kand93, Cho94] and its variation, or SCAN-EDF
algorithm is proposed in [Redd93]. In order to provide the tradeoff between disk
throughput and buffer requirements, dual. propose a grouped sweeping scheme
by integrating FIFO and SCAN algorithms [Yu92] and extend it to accommodate

heterogeneous streams [Chen93].

C. Data placement

Placing video streams on a single disk or multiple disks in an array is an-
other issue for the increased performance of storage subsystem. Rangan and Vin
[Rang93] propose a constrained allocation policy of digital continuous media on
a single disk. By employing a probabilistic model of video popularity, Little and
Venkatesh [Litt93] describe data distribution and replication to balance client re-
guests with available disk I/O bandwidth. In order to place video data across

multiple disks, Bersomt al. [Bers94, Bers95] propose a flexible technique called

staggered striping and Vet al. [Vin95] identify two placement policies for opti-
mizing the disk-array performance. Waeital. [Wang97b] formulate the problem
of video file allocation over disk arrays and present some heuristic algorithms to
find the near-optimal solutions. They argue that the consequence of replication
and striping of hot movie titles is the potential increase on the required number of

disk arrays.

D. Buffer management

Most of early works assume the sufficiently large buffers. Wu and Yu [Wu96,
Wu98] study the issue of dynamically utilizing the spare disk bandwidth and
buffer to maximize the system throughput of a video server. They introduce the
concept of minimizing buffer consumption to select an appropriate media stream
to use the spare disk bandwidth. Ng and Yang [Ng96] study the problem of how
to maximize the throughput of a continuous-media system, given fixed amounts
of buffer space and disk bandwidth both predetermined at design time. Their ap-

proach is to maximize the utilizations of disk and buffers.

In addition, several works explain the issues for video servers in detail [Gemm95,
0Ozde95, Mour96, Srivo7].

2.1.2 Further issues

A. VBR stream manipulation

10

Variable bit rate (VBR) video streams generate undeterministic workload, so
that a careful manipulation should be conducted in order to fully utilize server re-
sources. Admission control algorithms are proposed for tightly estimating work-
loads of VBR streams [Vin94, Neuf96, Maka97] and scheduling support for VBR

streams are given in [Paek96, Rosa96, Lee97, Pan98].

B. Support for interactive operations

Video servers should provide interactive operations such as stop, pause, re-
sume, fastforward, and rewind. Among them, fast scan operations (fastforward
and rewind) may require additional disk and network bandwidth. A lot of works
are performed to support them with acceptable cost. Dey-Satcal. [Dey94]
introduce an effective FF/Rew service which provides FF/Rew capabilities with
associated statistical QoS guarantees. Gitesl. propose a segment skipping
scheme in the server’s side [Chen94] and a stream conversion scheme in the
client’s side [Chen96], respectively. Kwemhal. [Kwon97] support interactive op-
erations efficiently by a disk placement scheme called PRR. Wu and Shu [Wu97]
present two basic scheduling approach, the prefetching approach and the grouping
approach for both fine-grain and coarse-grain data blocks. In addition, support for

interactive operations in multicast VOD servers is given in [Abra98]

C. Caching and page replacement

Although the performance gains of caching and page replacement schemes are
relatively small due to the continuous access property of video streams, several

works tackle the problems of caching and page replacement schemes including an

11

interval caching [Dan95] and new basic replacement algorithm and the distance-
based replacement algorithm [Ozde96]. Reddy [Redd97] studies several caching
strategies for improving the overall performance of the server and shows that re-
guest response time can be improved by some of the replacement policies that

take size of the request into account.

D. Cost-effective design

The number of clients that can be serviced simultaneously can be increased
just by adding disks and/or buffer memory to video servers. Hence, the cost-
effective design is a significant issue for video servers. Doganata and Tantawi
[Doga93] present an analytical tool which allows a user to perform a cost/ perfor-
mance analysis of video servers with hierarchical storage. The underlying model
comprises multiple systems, main memory, expanded storage, disks and a tape
library. They argue that the tool optimally allocates the video files to different
storage media based on the system parameters and the video file request probabil-
ity distribution. Chervenakt al. [Cher95] propose that striped disk farms achieve
close to full disk utilization, good load balancing, and the lowest cost per video
stream and Chang and Zakhor provide cost analyses for VBR video servers in
[Chan96a].

E. Zoned disk

Zoned disks represent an emerging trend in disk technology. Several works
study the placement of multimedia data on zoned disks that maximizes disk through-

put. Tewariet al. [Tewa96b] describe an optimal placement of fixed-size blocks

12

on zoned disks that minimizes response time using the differences in popularity
and access rates among the multimedia objects. Similarly,e&iat. [Kim97Db]
propose an efficient video block placement scheme considering the characteris-
tics of zoned disks and clients’ skewed access patterns for some popular videos.
In [Tong98], Tonget al. propose two schemes, freeand fixeds schemes, in a

unified framework of rearranging the zone layout in a logical manner.

F. Hierarchical storage management

Hierarchical storage structures consisting of memory, disk, and tertiary storage
devices provide a cost-effective solution for the large size of multimedia reposito-
ries. Ghandeharizadeh and Shahabi [Ghan94] investigate the role of hierarchical
multimedia storage managers and describe a piplelining mechanism that overlaps
the display of a portion of an object from the disk drive with the materialization of
its remainder from the tertiary. Lau and Lui [Lau97] consider a two-tier storage
architecture with a robotic tape library as the vast near-line storage and an on-line
disk system as the front-line storage. They also propose some tape-scheduling
algorithms. Wanget al. present techniques for managing disks as a buffer for
the tertiary storage of multimedia servers. They propose a new staging technique

called SEP in [Wang96] and extend it so called BiHOP in [Wang97c].

G. Real-time scheduling support

Since video data has periodic nature, the existing real-time scheduling theory
can be applied to multimedia applications. Tindglal. [Tind93] apply their fixed

priority preemptive scheduling theory to multimedia disk traffic for the guaranteed

13

retrieval. Recently, Mok and Chen [Mok96] propose a new multiframe model for
the task of which the execution time varies from one instance to another, and ap-
ply it to multimedia streams. Kaneko and Stankovic [Kane96] give an integrated
scheduling of multimedia and hard real-time tasks. Hamdaoui and Ramanathan
[Hamd95] introduce the notion din, k)-firm deadlines and propose a distance-
based priority assignment technique to reduce the probability of dynamic failures
which indicate if fewer tham: out of anyk consecutive instances meet their dead-
lines. In [Han95], by raising the priority of the urgent frames and pre-scheduling
them with the backwards-EDF algorithm, the urgent frames can meet their dead-
lines and the normal frames have more room for their execution. We propose a
simple but efficient scheduling scheme for multimedia streams with firm deadlines

using heuristic functions in [Cho97d].

2.2 Reated work

There exist a lot of works related to video servers. In this section, we introduce
some well-known works on video servers classified by the issues which this thesis

concerns.

2.2.1 Storageand retrieval in asingle server
Early works on video servers are founded on a single disk or multiple disks in a

single server architecture. Rangan and Vin [Rang91a, Rang91b, Rang92, Vin93]

present a model that relates disk and device characteristics to the recording rate,

14

and derive storage granularity and scattering parameters that guarantee continu-
ous access. They also develop admission control algorithms in order for the server
to support multiple concurrent clients. A prototype multimedia file system is im-

plemented, in which policies and algorithms for video storage are experimented.

Andersonret al. [Ande92] develop a Continuous Media File System (CMFS)
to support real-time storage and retrieval of continuous media data (digital video
and audio) on a single disk. CMFS addresses several interrelated design issues:
real-time semantics of sessions, disk layout, an admission control algorithm for

new sessions, and disk scheduling policy.

Lougher and Shepherd [Loug92, Loug93] describe the design of a file server
specially optimized for the storage and retrieval of continuous media including
disk striping, optimized disk layouts, real-time algorithms, and disk head schedul-
ing. They also implement a prototype of continuous media storage server equipped

with multiple disks.

Starlight Networks Inc. introduces a product for a single server equipped with
disk arrays. In [Toba93], Tobagt al. describe a video applications server soft-
ware focusing primarily on its underlying storage management system. The sys-
tem manages an array of disks and uses a disk access algorithm particularly suit-
able for video streaming. They also characterize the performance of the system
by determining the number of streams that can be supported for a given memory

size and a given service latency requirement.

Huynh and Khoshgoftaar [Huyn94] take an engineering approach and give
an extensive performance analysis of the subsystem control block architecture of

IBM-PC and disk array technology in typical video server environments. They

15

reveal that, with one video data stream, the five-disk RAID-5 array is a little bit
better than the non-RAID, four-disk system. However, when the video server
has to support multiple, simultaneous video data stream, the token ring network
becomes the system bottleneck, so there is not much difference between RAID-5

and non-RAID.

Bell Lab. implements a multimedia storage systé&mllini by providing the
software APIs for it. In [Chun96], Martiret al. describe the architecture of
Fellini. Fellini supports the storage and retrieval of both continuous media data
as well as conventional data such as text, binary, and image. They argue that the
algorithms for retrieving data from disks provide high throughput by reducing the
seek latency time and that the buffer management scheme exploits the sequential
access patterns for continuous media data in order to determine the buffer pages

to be replaced from the cache.

2.2.2 Storageand retrieval in alarge-scale server

The IBM Almaden research center implements a network file se®tarkfor
digital video and other continuous media data [HaskS8jarkscales from small
desktop machines to the SP-2 parallel supercomp@barks primary features

are support for continuous-time data, scalablility, high availability, and manage-

ability, all of which are crucial in its role in large-scale video servers.

Ghanderharizadeh and Ramos [Ghan93] describe a parallel multimedia infor-
mation system and the key technical ideas that enable it to support a real-time dis-

play of multimedia objects. They adopt a shared-nothing architecture, so that the

16

client stations are independent of the backend processors that contain multimedia
data. In order to support simultaneous retrieval of an object for different clients,
they suggest two alternative approaches (disk multitasking and data replication)
and investigate the tradeoffs associated with each approach using a simulation

model.

In order to support access to all types of conventional data stored in Oracle
relational and text databases, Orcale develops an Oracle Media Server providing
consumer based interactive access to multimedia data [Laur94]. The media server
supports storage and playback of real-time audio and video data. The server pro-
vides a platform for distributed client-server computing and access to data over
asymmetric real-time networks. A service mechanism allows applications to be
split such that client devices can focus on presentation, while backend services
running in a distributed server complex provide access to data via messaging or
lightweight RPC.

Freedman and DeWitt [Free95] perform a detailed simulation analysis of the
SPIFFI scalable video-on-demand system. They introduce and analyze the perfor-
mance of video server algorithms for real-time disk scheduling, page replacement,
and prefetching, and show that the love prefetch page replacement and delayed
prefetching algorithms substantially reduce the memory requirements, and thus,
reduce the cost of a video server. They also demonstrate that while the non-real-
time elevator disk scheduling algorithm can function well in a relatively small
video server (16 disks) with plenty of memory at the terminals, it does not scale

to larger systems.

Bell Lab. develops a distributed multimedia ser@alliope constructed from

17

personal computers. alliope each PC provides independent service for client;
i.e. a video file is not striped across multiple nodes. Heyitesl. [Heyb96] show

from their preliminary performance measurements tballiope can be scaled

from a single PC producing about 22 MPEG-1 video streams to hundreds of PCs
producing thousands of streams. They argue @udliope is cost-effective be-
cause it requires only commodity hardware and portable because it runs under
Unix. In similar architecture t&alliope, Kim et al. [Kim97a] design and imple-

ment a scalable, multi-purpose multimedia-on-demand system.

Reddy [Redd95] addresses the problem of distributing and scheduling videos
on a multiprocessor video server and the issue of communication scheduling over
the multiprocessor switch for the playback of the scheduled videos. The proposed
solution minimizes contention for links over the switch and makes video schedul-
ing very simple. He exploits the network topology of the multiprocessor to derive

such a sequence that guarantees freedom from communication conflicts.

Microsoft Corp. develops a distributed, fault-tolerant real-time file server
Tiger [Bolo96] which provides data streams at a constant, guaranteed rate to a
large number of clients, in addition to supporting more traditional file system op-
erations.Tigerruns on a collection of personal computers connected by an ATM
switch. Boloskyet al. discuss that the fundamental problem of the desigriger
is that of efficiently balancing user load against limited disk, network, and 1/0O bus
resources. They also argue tiager accomplishes this balancing by striping file
data across all disks and all computers in the distributed system, and then allocat-

ing data streams in a schedule that rotates across the disks.

Tewariet al. [Tewa96a] investigate the suitability of clustered architectures for

18

designing scalable multimedia servers. Specifically, through an analytic model of
clustered multimedia servers, they evaluate the effcts of architectural design of
the cluster, the size of the unit of data interleaving, and read-ahead buffering and
scheduling on the real-time performance guarantees provided by the server. They

also implement a prototype based on the results of their analysis.

The IBM Watson research center designs and implements a scalable collec-
tion of heterogeneous multimedia servers (Research Multimedia Server Complex)
which uses a variety of communications protocols and network types to deliver
multimedia objects to clients [Dan97]. The Research Server Complex Manager
(RSCM) provides a uniform external interface to applications hiding the hetero-
geneity and making the server complex appear as individual requestet2an
justify the particular functions of the RSCM and explains the design decisions and

tradeoffs.

Buddhikotet al. [Gros97] suggest the Massively-parallel And Real-time Stor-
age (MARS) architecture for the design and prototype implementation of a large-
scale video server. MARS exploits some of the well-known techniques in parallel
I/O, such as data striping and an innovative ATM based interconnect inside the
server to achieve a scalable architecture that transparently connects storage de-
vices to an ATM-based broadband network. The ATM interconnect within the
server employs a custom ASIC called ATM Port Interconnect Controller (APIC).
The architecture relies on innovative data striping and real-time scheduling to al-
low a large number of guaranteed concurrent accesses and uses separation of meta
data from real data to achieve a direct flow of the media streams between the stor-
age devices and the network. They argue that the system architecture is scalable

in terms of the number of supported clients and the throughput.

19

2.2.3 Storageand retrieval in amulti-resolution video server

Although a number of works have been done on multi-resolution or scalable cod-
ing of video data [Chia94, Laza94, Lian97, Tan96, Wang97a] and on transmission
of multi-resolution video in communication network [Delg94, Hunt, Mc96], a rel-

atively small number of works address the issue on multi-resolution video servers.

Chiueh and Katz [Chiu93] employ the specific multi-resolution video repre-
sentation coded in a Laplacian or Gaussian pyramid and lay out video data on
a two-dimensional disk array. The result of a simulation study shows that un-
der synthetic workload the multi-resolution scheme performs significantly better
in terms of I/O rate, average waiting time, and average physical data bandwidth

requirement as compared with full-rate single resolution video.

Keeton and Katz [Keet93] propose a systems approach to providing video ser-
vice which integrates the multi-resolution data generated by scalable compression
algorithms with the high-bandwidth, high-capacity storage provided by disk ar-
rays. They argue from their simulation results that the storage of multi-resolution
video permits service to considerably more clients than the storage of single-
resolution video and that retrieval of data striped across the disks of an array can

be performed much more efficiently than retrieval from a single disk.

Chang and Zakhor [Chan94, Chan96a, Chan97] consider the placement of
scalable video data on single and multiple disks for storage and retrieval. For the
single-disk case, they explore the principle of constant frame grouping from scal-
able video data. They also examine the qualities of video reconstructions obtained

from a real disk video server and find the scalable video more visually appealing.

20

Considering the multiple disk scenario, they prove that periodic interleaving re-

sults in lower system delay.

Paeket al. [Paek95] present a flexible data placement strategy for independent
parallel disk arrays. The trade-off between utilization efficiency and interactive
delay is investigated for the data placement strategy. Based on the trade-off, they
show the advantage of video servers supporting a range of interactivity QoS. They
also argue that using scalable video improves the utilization and interactivity per-
formance of a video server. They use three-layer scalable MPEG2 digital video to

support resolution QoS.

Chenet al. [Chen95] suggest an idea of staggering scalable data blocks con-
sidering video data corresponding to different rates of the video clip are not re-
quired to reside in the same disk. On the basis of the idea, they propose and ex-
plore the approach of rate staggering, staggering video data in the disk array
based on data rates. They argue that the advantages of the proposed rate stagger-
ing method include: (1) minimizing the intermediate buffer space required at the
server, (2) achieving better load balancing due to finer scheduling granularity, and
(3) alleviating the disk bandwidth fragmentation. However, their argument about

(1) has some technical flaws.

Shenoy and Vin [Shen95, Shen98] present a placement algorithm that inter-
leaves multi-resolution video streams on a disk array and enables a video server to
efficiently support playback of these streams at different resolution levels. They
then combine this placement algorithm with a scalable compression technique to

efficiently support interactive scan operations. They present an analytical model

21

for evaluating the impact of the scan operations on the performance of disk-array-
based servers. The experiments demonstrate that exploiting the characteristics of
video streams and human perceptual tolerance enables a server to support interac-

tive operations without any additional overhead.

Beckmanret al. [Beck98] describe an admission control policy in which the
quality of service is negotiated at stream initiation and is a function of both the
desired quality of service and the available bandwidth resources. They argue that
the advantage of their approach is the ability to robustly service large numbers
of clients, while providing increased quality of service during low usage periods.
Several simple algorithms for implementing the policy are proposed and evaluated

via simulation.

22

Chapter 3

Storageand retrieval in asingle

server

In this chapter, we design and implement a video server equipped with a disk array
for the storage subsystem. The single server approach for video servers needs to
adopt disk arrays because video servers are required to provide large storage space
and transmission bandwidth. Disk arrays reveal large differences in performance
according to their organization and data distribution across disks [Cata95]. This
chapter analyzes the performance of disk arrays for storage architecture of video
servers and implement a software-based disk array for the video server on the

basis of the performance analysis.

23

Local
Network
CPU Memory [DSkT Adapter

System bus ‘

SCsSI
Adapter

SCSI bus ‘

| Il | |

SCsI SCsi SCsI SCsi
Disk Disk Disk Disk

Figure 3.1: Architecture of a single server

3.1 System model

First of all, we begin by taking a small-scale single server approach in this chapter.
The server is based on a personal computer (PC) equipped with a SCSI adapter
and multiple SCSI hard disk drives. The server architecture is shown in Figure 3.1.
The server consists of processor, memory system, system bus, disk subsystem, and
network subsystem. A SCSI adapter and SCSI hard disk drives comprise the disk
subsystem and we take a software-based approach for the disk array subsystem.
We assume that meta data for video streams are stored on a separate local disk
in order to guarantee the large bandwidth of disk array subsystem. On the other
hand, the network subsystem may be another performance bottleneck of the video
server, this problem is not considered throughout the thesis assuming that the
network subsystem provides large bandwidth enough to support the transmission

of video streams.

24

The major mission of video servers is to convey data through I/O path: disk to
network. Hence, the CPU utilization is not so high. Although CPU controls disk
arrays, the tasks include distributing client requests to disks, scheduling requests
on each disk queue, issuing commands to SCSI adapter, and sending the retrieved
data to clients via network subsystem. So, we can find that CPU does not cause
the performance bottleneck in video servers. In addition, since the bandwidth of
system bus is far larger than that of SCSI bus, we conclude that the performance

bottleneck of video servers occurs in the disk subsystem [Cho94].

Disk arrays provide large bandwidth by activating multiple disks concurrently
or in parallel. Multiple disks in a disk array are connected to the system through a
SCSI bus which may cause the performance bottleneck. The trends of SCSI disk
and bus technologies show that the bandwidth of SCSI bus can support four disks
analytically without any performance bottleneck in thelb®o, we consider only
up to four disks in a SCSI bus. On the other hand, although a hardware-based disk
array controller may be used, we take the software-based approach as mentioned

earlier because it is flexible to implement disk arrays suitable for video servers.

3.2 Performanceanalysisof disk arrays

There exist two straightforward strategies which explore different aspects of paral-
lelism and concurrency offered by striping data across disks [Keet93]. The degree

of concurrency is defined as the number of outstanding request at one time and the

IThe current transfer bandwidth of a SCSI disk is about 10MB/s while the wide SCSI bus
supports 40MB/s.

25

parallelism describes the number of disks that service a single request. Among dif-
ferent levels of RAID (Redundant Arrays of Inexpensive Disks), RAID3 exploits
the parallelism while RAID4 and RAID5 do the concurrency. We consider only
data striping: redundancy such as parity for on-line recovery is beyond the scope
of the thesis and is not described further. So, we call the ‘parallelism’ scheme and

‘concurrency’ scheme, AID3 and AID5, respectively.

In AID3, a request is serviced on all the disks while all the disks in the array
are synchronized. In video servers, however, since client requests arrives period-
ically, the synchronization unit in AID3 may be the period of client requests. So,
AID3 can be implemented by software-based approach without difficulty. On the
contrary, in AID5, a request is serviced on a single disk but multiple requests may
be serviced across disks concurrently. Therefore, scheduling support is required

to evenly distribute requests across disks.

The major performance metric of video servers is the number of clients that
can be serviced simultaneously as mentioned in Chapter 1. Since we identified
that the performance bottleneck of video servers is the disk subsystem in Section
3.1, the number of clients that can be serviced simultaneously depends upon the

performance of disk subsystem.

Before analyzing the performance of disk subsystem, we first describe the
basic behavior of video servers. Let us assume that aliginK < N) requests
a video strean¥;. Then, the server must retriepédisk blocks and transmit them
to clients periodically. The period is calledund The round lengti’, .4 IS
determined by the playback rate Bf (1 < i < N) and the disk block size. In

this chapter, we assume that the playback ratg ¢t < : <) is equal to each

26

other for convenience; S@;,uns = Tpiay, Wherel,,, denotes the playback time

of a disk block. This assumption is broken in the next chapter.

First, we analyze the performance of AID5 in terms of the number of clients
that can be serviced simultaneously in video servers. Video streams are divided
into striping units and are striped across disks. The size of client requests is the
same as the striping unit or one disk block. From the view point of each disk,
disk requests for a client arrive with the perioddfounds in AID5, wherel
denotes the number of disks in the array, because a request is serviced in a disk
and the next request is serviced in the adjacent disk, or in round-robin manner.
Thus, duringd rounds, totalV disk blocks must be retrieved in each disk. This

condition can be written by

B
Toverhead + N x ARfDS S d X T;;?({?J[)S’ (31)

whereR denotes the transfer rate of a disk aBds the disk block size€T,, e, head
represents the time for the disk head to arrive at the desired position including
seek time and rotational latency. If the disk block size is determined by the unit of
track, or given by multiple tracks, the rotational latency can be ignored due to the
track buffer in disk drives. The SCAN disk scheduling minimiZes,.,;..q be-

cause all the requests can be serviced while the disk head moves to one direction.
Since recent disks reveal non-linear seek time for the seek distance, however, it is

difficult to estimate the exact value },¢.1..- From Eg. (3.1), we obtain

AID5
N < Tplay d— Toverhead

- Barps/R
Whend = 4, B = 36K B, R = 2.4M B/s, andT,,,, = 192ms, for example, the

(3.2)

shaded region in Figure 3.2 represents the feasible valuég &rd T, . ncqq- IN

2We assume 1.5Mbps MPEG-1 video streams.

27

51200

Toverhead =N- Tavg

/

76
/ Toverhead
— >

766.8 768

Figure 3.2: Relationship betwe&8,c;1ceq aNAN

Figure 3.2, assuming that the average overhead for one disk request is 10ms and
thusTyyernead = 10N, we getN = 76 whenT e nead = 766.8ms. If we assume

that the average overhead for a disk request is 13¥ns; 51 is obtained while
Toverhead = 767.2ms.

On the other hand, in AID3, since a disk block for client request is distributed
across all the disks, the striping unitligd of a block, or%. Then, from the
viewpoint of each disk as similar in AID5, the server must retriévestriping
units for each round yielding:

N B
Toverhead + E X Afng?) < Tﬁié)g (33)

In Eg. (3.1) and Eq. (3.3), if we let the striping unit sizes of two schemes be the

same, we obtai;p; = d - Barps andT;IP* = d - T1P°. Applying them to
Eq. (3.3), Eg. (3.1) becomes to be equivalent to Eq. (3.3). This indicates that the
performance of two schemes are equal to each other when the striping unit sizes

are given by the same value. In that case, however, since the block size of AID3

28

is d times larger than that of AID5, the buffer requirement of AID3 is much larger
than that of AID5. On the condition that the disk block sizes of two schemes
are equal, AID5 performs better than AID3. As compared with Figure 3.2, for
instance, AID3 can provide services for only 19 concurrent clients assuming the

average overhead for a disk request is 10ms.

The simple analysis given above reveals that the disk seek time and rotational
latency, orT,,..n.q Qreatly affect on the performance of disk arrays. In order
to reduce the left-term of Eq. (3.1) and Eq. (3.3), we should employ SCAN
disk scheduling algorithm and the disk block sizehould be large enough. As
mentioned earlier, the striping unit should be multiple tracks, so that the rotational
latency is ignored due to the track buffer of disk drives. The larger the disk block
size, the larger the buffer requirement. So, the cost-effective disk block size should
be determined. We explore components which affect on the performance of video

servers through simulation in the next section.

3.3 Simulation studies

Figure 3.3 depicts the simulation model. During each round with the period of
Tround, total N disk block requests are generated forclients and they are dis-
tributed across disks according to the striping policies. Each disk scheduler re-
orders the requests by SCAN disk scheduling algorithm and services them. All
the requests should be serviced during a rounf,gf,;. Simulation proceeds by
increasingN and determines the maximum number of streams that can be ser-

viced simultaneouslyT’,,.,q is calculated by the disk block size assuming the

29

Disk Scheduler Buffer

Tround B deadline
/ \ () —> check
Lk N disk block P
isk bloc 'l
m requests v)
Request Request
‘ Generator | I::> ‘ Distributor _
\\/ \\ N -
\ N4 Transmit
M
g

Figure 3.3: Simulation model

video stream rate is given by 1.5Mbps. For the purpose of modeling the behav-
ior of disk drives exactly, we employ a study of Ruemmler and Wilkes [Ruem94]
which analyzes the characteristics of modern disk drives. We choose HP 97560
disk drives for the simulation of which the performance parameters are given in
Table 3.1.

The major concern is how the disk block size and striping techniques affect
the performance of video servers. We first compare the performance of striping
techniques: AID3, AID5, and the hybrid technique of AID3 and AID5. We also
consider ‘no striping’ scheme in which data are not striped across disks but are
stored in disks sequentially. Figure 3.4 shows the results. As analyzed in Section
3.2, the performances of AID3, AID5, and the hybrid scheme do not reveal large
differences but the absolute values of the maximum number of streams that can
be serviced simultaneously show some differences with those of the analysis per-
formed in the previous section. This occurs because we underestiigi€aq
and include additional overhead such as controller overhead and head switch time

in the simulation.

30

Table 3.1: Disk parameters used in the simulation (HP 97560)

Capacity 1.3GB
Cylinders 1,962
Tracks per cylinder 19
Track size 36 KB
Revolution speed 4,002 RPM
Seek time 3.24 4 0.400/d (0 < d < 383)
8.00 + 0.008d (383 < d < 1962)
Controller overhead 2.2ms
Head switch time 1.6 ms
50
40f
2]
£
]
©30;
(%]
©
@
'E 20p : AIDS
2 k I
10} o No stiping oaances
0

18 36 72 108 144
Striping unit (KB)

Figure 3.4: Comparison of striping policies

31

Although AID3, AID5, and the hybrid striping techniques show similar per-
formance when the striping unit is equal to each other, the buffer requirement of
AIDS is far smaller than those of the other schemes, because the disk block size
of AID5S is the smallest. In addition, the large disk block leads to the |Z&igg,q
and thus results in the large start-up latency for the service. We can conclude that

AIDS5 is suitable for the storage architecture of video servers.

Figure 3.4 also reveals that the number of streams increases as the striping
unit size increases. Itis noteworthy that allocating one more track for striping unit
increases the performance significantly. This is because the large striping unit
reduces the portion df .1 IN EQ. (3.1) and Eq. (3.3). However, when the
striping unit is greater than three tracks, the performance gain reduces. Therefore,

it can be concluded that the best choice for the striping unit would be 1 or 2 tracks.

In Figure 3.5, the effects of the number of disks are presented when AID5 is
applied. Figure 3.5 reveals the linear increase in the number of streams as the
number of disks increases. However, as mentioned earlier, 5 or more disks may

cause a bottleneck in SCSI bus.

Finally, we explore the placement policy in a disk. As compared with the ran-
dom allocation scheme, the contiguous allocation scheme is simple to implement
and requires no meta data for video streams but may cause the fragmentation in
disk storage space when video streams are created, edited, and deleted frequently.
Figure 3.6 compares the performance of two schemes. The contiguous allocation
scheme performs better slightly. In VOD application where read operations are
dominant and thus no fragmentation occurs, the contiguous allocation scheme is

competitive approach for the placement policy.

32

50

401 e R
" -
E r i 1disk

/ —e— 2disks

£30r —«— 4disks 1
7] /
Y— /
(@] /
o / __»
220+ / . “ 1
IS /
=] *
Pz

0 18 36 72 108 144
Striping unit (KB)

Figure 3.5: Effect of the number of disks (AID5= 36K B)

50

I
o
T

w
o
T
I

—+— Contiguous
—&— Random

Number of streams
N
o
T
1

=
o
T
L

0 18 36 72 108 144
Striping unit (KB)

Figure 3.6: Comparison of placement schemes (AlP5,36 K B)

33

Table 3.2: The proposed storage architecture for a single server

Number of disks 4

Disk scheduling SCAN
Disk striping AID5
Striping unit 1 ~ 2 tracks
Placement policy contiguous

In summary, we suggest a storage architecture for video servers equipped with
disk arrays in Table 3.2 from the analysis and simulation conducted in Section
3.2 and Section 3.3. We implement the proposed storage architecture in the next

section.

3.4 Implementation of adisk array manager: DAman

On the basis of the studies conducted in the previous sections, we implement
a disk array for video servers and measure its performance in this section. As
mentioned in Section 3.1, Figure 3.1 depicts the hardware platform of the server.
The server is a Pentium 100MHz PC equipped with a AHA-1540CP SCSI adapter
and four Quantum 850MB SCSI disks. We choose the QNX real-time microkernel
operating systems [QNX93] for the software platform and implement a disk array
manager, which we name DAmM3ras a server process on QNX. Since QNX is

a microkernel OS, device drivers run as server procésS§es it is convenient to

develop and debug device drivers. In addition, QNX supports real-time facilities

3Source codes for DAman can be accessefitatp: // csel ab. snu. ac. kr/ ~cj s/
pr oj / DAman/ DAman. ht m .
4The priorities of device drivers is higher than those of application programs.

34

DAman
l User request

File System Manager
DAopen DAclose DAread DAwrite
DAseek DArm DAfsck DAmkfs Interrupt
DAls DAmv DAfree DAmalloc M DA
DAlbsize DArequest anager l_bman
<« lorary
l StripRequest() N o S'[Ub ------
Striping Manager o
No striping AID3 AID5 —» Applicaiton
Program
l SCSIRequest() Interrupt
SCSI Manager Handler
Management of SCSI adapters and disks
AHAcommand()
!
J Dat/a

QNX redl-time microkernel OS /

\ 4

H/W (SCSI adapters and disks)

Figure 3.7: Overall architecture of DAman

including prioritized message and process scheduling. Consequently, we believe

that QNX is an appropriate OS for DAman and video servers.

3.4.1 Overall architecture

DAman consists of four functional managers: file system manager, striping man-
ager, SCSI manager, and interrupt manager, as shown in Figure 3.7. By imple-
menting functional managers, it is easy to add, update, and delete each function.
However, the functional managers are not implemented as independent processes,
because QNX does not support thread facilities. If the managers are implemented
as independent processes, large overhead of IPC may lead to low performance.

DAman is invoked from messages given by applications or by interrupt handler.

35

super bl ock
directory bl ock

bi t map bl ock

dat a bl ock

Figure 3.8: DAman file system structure

Since the messages of interrupt handler have higher priorities than those of ap-
plications, the interrupt manager has the highest priority among the functional

managers.

The control flow between each managers is also depicted in Figure 3.7. Ap-
plication programs are linked with DAman libraries and the library stub sends
messages to DAman for data service and receives results. The DAman library
stub packs a message for the given system call and send it to DAman. The file
system manager processes the message and hand it over to the striping manager
by St ri pRequest () function call. Then, according to the striping policy, the
striping manager packs a SCSI request and 8@l Request () . the SCSI
manager controls SCSI devices including adapters and disks thAdidBom
mand() . When a SCSI request service is done, SCSI adapters notify it to CPU

by interrupt. The interrupt handler invokes DAman for the interrupt processing.

DAman provides a separate file system from QNX of which the structure is
given in Figure 3.8. Since DAman is designed for video servers, DAman file sys-
tem is optimized on continuous read operations. That is, it has no index structure
such as node in UNIX while each block of a video file is placed contiguously.
So, all the blocks can be accessed directly. In Figure 3.8, the super block con-

tains hardware information including the number of SCSI adapters, the number of

36

i nt da_open(char *file_nane, int flag);

i nt da_cl ose(int handle);

i nt daread(int handle, char _far *buf, int nmax.size);
i nt dawite(int handle, char _far *buf, int size);
i nt darequest(int n, ReqBlkt *req.blk);

i nt da_rew nd(int handl e);

i nt da_nkfs(int |ogical blocksize);

i nt da_fsck(void);

i nt da_l bsi ze(voi d);

i nt dals(DireEntt *dir, char *nane);

i nt da_rnm(char *fil e_.nane);

i nt da_mv(char *source, char *dest);

char _far * danmalloc(int size);

i nt dafree(char _far *pointer);

char * far2near(char _far *pointer, int size);

i nt da_errnsg(void);

Figure 3.9: Run-time libraries for DAman

SCSI disks, IRQ number, base address for adapters, etc. It also has the striping
type. DAman initializes itself with the information stored in the super block. The
directory block stores directory entries for each video file such as file name, file
size, created time, and owner. The bitmap block indicates whether each block is

allocated or not. It is used on compaction and file system check operation.

The file system manager handles the logical address space on file systems
while the mapping from logical block to physical block is performed by the strip-
ing manager. The striping manager supports the following three policies: no strip-
ing, AID3, and AID5. The SCSI manager and the interrupt manager control the
SCSI adapters and disks. The SCSI manager packs SCSI commands from the
information given by the striping manager and send them to the adapter. The in-
terrupt manager is invoked by proxy messages which are delivered from interrupt

handler when SCSI commands are done.

37

Table 3.3: Utilities for DAman

Command Description
cp2da copy a file to DAman
cpda2 copy a file from DAman
nmkdaf s make a DAman file system
dal s list directory entries
darm remove a file
danv move (rename) a file
daf sck check DAman file system

As mentioned earlier, the disk blocks can be accessed directly without index
structure and are placed contiguously. This is because DAman is designed for
video servers in which read operations are dominant. However, when video files
are deleted, inserted, and updated frequently, the fragmentation in file system ad-
dress space may occur [Vin95]. We believe that this problem does not occur in
video servers and can be solved simply by replacing only the file system manager
with a new one. Another optimization for read operations is that DAman has no
buffer cache. In other words, data are transferred to user address space directly
through DMA mechanism. Hence, there is no data copying overhead from kernel
address space to user address space which takes large portion in read operations
of video servers [Coul94]. The performance gain of buffer cache in video servers

is not so large unless multiple clients arrive within a short time interval [Dan95].

DAman supports 14 system calls as shown in Figure 3.7. Based on them,
16 run-time libraries are given for applications in Figure 3.9. We also provide
some utilies for the maintenance of DAman in Table 3.3. When the fragmentation
problem in DAman is severe, we can eliminate itdgf sck command. Finally,

we develop a video-on-demand system by integrating DAman with a video server

38

Tround deadline

Buff
q utter check
N disk block : — &
m requests + No striping
Request | DAman .
Generator b e
© AID5

: Transmit

Figure 3.10: Experiment model

given in [Ahn95]. The prototype demonstrates that DAman well supports multiple

concurrent streams

3.4.2 Empirical evaluation

In this subsection, we empirically evaluate the performance of DAman. Figure
3.10 depicts the experimental model similar to that of the simulation study given
in Section 3.3. A request generator is an application program linked with DAman
libraries. It generatesv disk requests periodically with the period @F.,,,.q-
DAman stores 20 video files each of which has 150MB size. We assume that
the stream rate of a video stream is 160KB/SinceT,,,,, iS calculated from

the block size and the stream rate of video stredms,. is given by 0.1 second
when the disk block size is 16KB. We derive the number of streams that can be
serviced simultaneously by measuring the number of disk blocks which can be re-

trieved within a round, of’,,,;. Meanwhile, we measure the elapsed time using

SDue to the lack of hardware MPEG-1 decoders, we have ascertained two concurrent streams
to be played back hiccup-free in the prototype. It is expected, however, that DAman can support
as many as concurrent streams presented in the next subsection through simulation.

6~ 1.5Mbps.

39

Table 3.4: Execution time of DAmamn§)

Striping policy No striping | AID3 | AID5
Request to DAman 132.7 130.8| 130.0
File system manager 23.3 22.7 | 25.6
Striping manager 14.9 26.3 | 15.1
SCSI manager 17.6 25.7 | 18.7
Interrupt manager 109.2 407.8| 107.2

a timer board which has Qu$ granularity.

First, Table 3.4 represents the execution time of each functional manager of
DAman. The execution time is much less than the disk access time which is tens of
milli-seconds. We can find from Table 3.4 that the time for request to DAman and
the execution time of the interrupt manager are relatively large. This is because
some messages are passed between an application to DAman, and between the
interrupt handler to DAman, respectively. It is well known that message passing

leads to large overhead in micro-kernel operating systems.

As for the comparison of striping policies, while ‘no striping’ and AID5 reveal
the similar execution time to each other, the execution times of the striping man-
ager, the SCSI manager, and the interrupt manager in AID3 are larger than those
in ‘no striping’ and AID5. This occurs because a logical block service in AID3
is divided into four requests to each disk which should be handled in the striping
manager, the SCSI manager, and the interrupt manager. The total service time
for a disk access in AID3 is expected to be far larger than those in ‘no striping’
and AID5 because: (1) the service time depends on the largest one among all the
disks, and (2) a logical block is divided into multiple physical disk blocks yielding

relatively large portion of disk seek time.

40

Number of streams

—+— No striping
4r o AID3
—+— AID5

16 32 48 80 160
Logical block size (KB)

Figure 3.11: Comparison of striping policies (4 disks)

Number of streams

J //
4r —+— No striping 1

—o— AID3
—+— AID5

16 32 48 80 160
Logical block size (KB)

Figure 3.12: Comparison of striping policies (2 disks)

41

Figure 3.11 reflects the analysis described above. Given a logical block size,
AID3 provides the smallest number of concurrent streams. One more thing to
point outin Figure 3.12 is that the number of streams increases as the logical block
size increases. This is a straightforward result taking disk seek time overhead into
account. However, the increament ratio decreases when the logical block size is
greater than two tracksThis coincides with the simulation studies in Section 3.3.
The similar results are derived in Figure 3.12 when only two disks comprise the

disk array.

Observe in Figure 3.11 and Figure 3.12 that the performance of ‘no striping’
scheme is equivalent to AID5. This occurs because we let the disk workload be
evenly distributed across disks, which may not occur in real world. AID5 itself
evenly distributes disk workload across disks. In addition, Figure 3.13 reveals
that the average service time of AID5 is less than that of ‘no striping’ scheme.
Consequently, AID5 is the most promising architecture for video servers, which

also coincides with the simulation studies.

Figure 3.14 shows the effect of the number of disks in the array. Although the
number of streams increases as the number of disks increases, the linear increase
is not obtained due to the contention on system bus and/or SCSI bus, which is not
reflected on the simulation studies. In addition, the actual number of streams that
can be serviced in DAman shows large differences from that of simulation studies.
This indicates that: (1) the actual disk access time including seek time, rotational
latency, and transfer time is greater than the analytic value, and (2) the other over-

head of DAman takes large portion of the total service time. Nevertheless, the

"The track size of our disk is 32KB.

42

1000

800+ —+— No striping 1
—e— AID5

m
E
< 600" 1
=
©
o
'S 400r 1
@
(%]

200r 1

<«
0

16 32 48 80 160
Logical block size (KB)

Figure 3.13: Comparison between no striping and AID5 (4 disks)

Number of streams

16 32 48

80 160
Logical block size (KB)

Figure 3.14: Effect of the number of disks (AID5)

43

shapes of the graphs€. the tendency of the effects of parameters on perfor-
mance) are similar; the proposed storage architecture in Table 3.2 obtained by the
simulation studies in Section 3.3 is validated through the performance evaluation

of DAman.

44

Chapter 4

Storageand retrieval in alarge-scale

server

The single server approach in Chapter 3 has limitations in scalability [Lee98]. For
the purpose of providing video services for the public over high-speed network, a
video server should store thousands of video streams and serve tens of thousands
of concurrent clients. Assuming that MPEG-1 video streams require a playback
rate of 1.5Mbps, a 100-minute long video requires about 1.1GB storage, and two
thousand videos require a capacity of 2.2TB, or 220 disks of 10GB. If we ex-
ploit the perfect parallelism or concurrency of disks in such a system and assume
that the effective bandwidth of a disk is 10MB/s, 11733 clients can be serviced
simultaneously. Such a large-scale server should be designed and implemented
based on parallel video server architecture. The parallel server consists of storage
nodes which store and provide video data and network nodes which deliver data

to clients in a timely fashion. The storage and network functions may reside in

45

a node or be isolated physically in different nodes. The storage node should be
equipped with high-performance storage subsystems such as disk arrays. Com-

munication between nodes also demands high bandwidth interconnections.

In this chapter we address the problems in designing a large-scale video server
which consists of a large number of nodes connected by a high performance in-
terconnection network. The design problems narrow down to how to cluster such
nodes into parallel servers and how to distribute and schedule video streams in a

parallel server.

4.1 System model

As similar to the single server equipped with disk arrays in Chapter 3, each video
stream can be divided into logical blocks and then distributed among multiple
storage nodes, which referred to @deta-stripingin this chapter. Data-striping
implicitly achieves higher disk bandwidth and load balancing [Tewa96a]. In a
distributed server, however, a video stream may be stored and serviced in a single

storage node [Heyb96], which referred toresstriping

Although the data-striping technique has the aforementioned advantages, it
has the following disadvantages: First, a distributed scheduling among storage
nodes is required. This imposes clock synchronization problems among all nodes
in a parallel server. Second, service latency is relatively larger than the no-striping
case on account of scheduling problems. Service latency means the time elapsed
since a request is made to initiate a new stream until the stream is serviced. Third,

data-striping lacks scalability. If disks or storage nodes are added to a parallel

46

Service Gateway E
= I

@r Cluster 1

Client

@r Cluster M

Figure 4.1: Configuration of a large-scale video server

server, the whole data must be redistributed among storage nodes. Finally, the
popularity of video streams cannot be considered. Since there is no improvement
in performance when more than one copy of the same video is placed on a disk
[Litt93], replicating popular videos in a parallel server fails to increase the number

of clients that can be serviced simultaneously. Hence, a hybrid technique of data-

striping and no-striping is required.

For a given set of nodes, we divide it into server clusters as shown in Figure
4.1. Considering the advantages of data-striping, video streams are striped across
all the storage nodes in a server cluster while a server cluster has the parallel server
architecturé. Video streams are allocated and replicated among server clusters
with respect to their popularity. Server clusters provide video streams for clients
independently. A series of video streams stored in server clusters is serviced at a
service gateway. Considering the load balance among server clusters, the gateway

provides clients with the address of the server cluster that stores the requested

YIn Chapter 4, the terms server cluster and parallel server are used interchangeably.

47

.

—-

storage 7 network
node0 BE= node O
o .
= []
f . ——H
Interconnection i
network
storage network
node d-1 node d-1

Figure 4.2: Architecture of a parallel server (server cluster)

video. For a given set of nodes, the appropriate humber of server clusters or
the number of nodes within a server cluster (the size of a server cluster) will be

described in Section 4.3. If the size of a server cluster equals the number of nodes
in the server, video streams are striped across the server, that is, data-striping
occurs in the server. On the other hand, if the size of a server cluster is equal to

one, no-striping scheme is employed in the server.

Figure 4.2 shows the architecture of a server cluster (parallel server) which
consists ofstoragenodesandnetwork nodes Storage nodes are responsible for
storing video data and delivering the required bandwidth to this data while net-
work nodes are for delivering data blocks from storage nodes to clients. Each
request stream would originate at one of the network nodes in the server cluster.
This network node should deliver the video stream without violating the continu-
ity requirement of the stream. Although storage and network functions can reside
on the same node by connecting nade input: and output of the network, we

will treat storage nodes and network nodes separately in the rest of this chapter.

We consider multistage interconnection networks (MIN) for interconnecting

48

storage nodes and network nodes. There exist static connection networks and
dynamic connection networks for the interconnection networks. Static networks
such as mesh, torus, and hypercube networks are suitable for building computer
systems where the communication patterns are predictable or implementable with
static connections [Hwan93]. While static networks are used for special-purpose
applications such as scientific parallel computations, for multipurpose or general-
purpose applications, we need to use dynamic connection networks which can

implement all communication patterns based on program demands.

Dynamic connection networks include backplane bus systems, crossbar switch
networks, and multistage networks. Bus systems and crossbar switch networks
are limited to small or medium-size systems due to bus bandwidth and large cost,
respectively, while multistage interconnection networks can be extended to larger
systems [Hwan93]. We consider Omega interconnection network [Bern93] as the
communication network between storage nodes and network nodes. However,
some blocking networks are equivalent after graph transformations, so that the
communication scheduling algorithm proposed in Section 4.2.3 is applicable to
other multistage interconnection networks which are topologically equivalent to

Omega network [Wu80] such as Baseline and Banyan networks.

4.2 Storageand retrieval in aparallel server

The parallel server architecture imposes the following problems: data distribu-
tion and retrieval scheduling at storage nodes, communication scheduling between

storage nodes and network nodes, and admission control for deterministic service

49

guarantee. The following subsections focus on these issues in a server cluster, that

is, a parallel server.

4.2.1 Data placement

Data placement refers to distributing the blocks of video streams across storage
nodes. This involves the order in which the blocks are striped across the stor-
age nodes. Data organization determines bandwidth available to a video, load
balance across storage nodes, and communication patterns. Since we verified in
Chapter 3 that AID5 is the most appropriate storage architecture for video servers
although the analysis proceeds in the single server approach, we consider only a
data striping technique in which successive blocks are interleaved across storage
nodes. Successive blocks of a video stream may be allocated to storage nodes

either using a round-robin or a random placement algorithm [Tewa96a].

With random placement, successive blocks are placed on storage nodes using
a random permutation. Although the random placement technique adapts to in-
cremental growth, it may require more meta data and cause the load of storage
nodes to be unbalanced. On the other hand, the round-robin placement scheme
places successive blocks of a video stream on adjacent storage nodes and allows
the streams to access storage nodes deterministically thus generating deterministic
communication patterns between storage nodes and network nodes. However, this
could cause large service latency if start blocks of video streams are placed at the
same storage nodes. Distributing the starting points of video streams across stor-
age nodes decreases the average service latency. Figure 4.3 illustrates an example

of data placement, wheré.3 denotes the 3rd block of stream

50

node O node 1 node 2 node 3

A0 Al A2 A3
A4 Ab A.6 AT
B.3 B.0 B.1 B2
B.7 B.4 B.5 B.6
C.2 C.3 C.0 C.1
C.6 c.7 c.4 C.5
D.1 D.2 D.3 D.0
D.5 D.6 D.7 DA

Figure 4.3: An example of data placement

We now analyze the worst case service latency. As an illustration, suppose
that three clients request video stream)s3, andC' respectively and that storage
nodes 0, 1, and 2 serve the first blocksAfB, andC, respectively, as shown
in Figure 4.3. After the playback timg,;,, of a disk block, storage nodes 1, 2,
and 3 schedule the next block. If the fourth client requests video stieanthis
moment, the schedule for blodR.0 will be delayed until storage node 3 is idle;
so the loads are balanced across the storage nodes. Hence, the scheduling penalty
is 31 },4y. Supposing there aréstorage nodes (as is in Chapter 3), the worst case

service latency will be modeled as follows:

(d - l)TPlaZI + Tread(l) + Tcomm + Tnet S j}naétézcy, (41)

whereT,...(k) denotes the time to readdisk blocks,T.,,. is the time to deliver
a block from storage node to network node, dhgd is the time to deliver a block

to clients.

51

By rewriting Eq. (4.1), the number of nodes in a server may be bounded to

d S (jjmam + Tplay - Tread(l) - Tcomm - Tnet)/Tplay- (42)

latency

4.2.2 Retrieval scheduling

The performance of video servers is limited by their relatively low disk bandwidth
as mentioned in Chapter 3. This section describes a scheduling technique that
fully utilizes the disk bandwidth of storage nodes while satisfying the continuity

requirement of video streams.

We first consider a process involved in serving a single client. A disk block
must be retrieved for the client eveffy,,, seconds. From the standpoint of a
storage node, it must retrieve a disk block every T),,, seconds, wheré is the
number of storage nodes. Thus, the retrieval of a disk block must be completed

within d x Tyja,°.

We now considertV client requestsyy, 79, - -+, rn. INn each storage nod&y
retrievals forry, r, - - -, 7y constitutes a round. That is, in a storage n(b(}lebz,
---, by are retrieved in thgth round, wheré’ denotes theth disk block ofr; in
the storage node. Each disk blobgk, must be retrieved within its deadliné,x
T},,- The deadlines df}, 1 < i < N, will be met if the period of a round; ,unq
is given by the shortest playback time amahlgdisk blocks,d x Tgﬁjg, where

T = mini<i<n(T},,). In order to serviceV clients without violating the

2In Chapter 3, we described more in detail.

52

round: (1) (2) (3) (4 (5) (6) (7)
roeo bL by by bL bl by b

ro bf b% bg bZ
r3: b:{’ bg bg
Tyt b‘ll bg b% bi bg

time: 0 1 2 3 4 5 6

Figure 4.4: A scenario of simple round scheduling in a storage node

continuity of streams, the following admission control criteria must be satfsfied

Treaa(N) < d x Tyn (4.3)
When clients access heterogeneous streﬁijp@,’s of client request;, 1 <
i < N, are different from each other with respect to the playback rate of video
streams. T, =Tz, =--- =T, = Ty, then everyd x T,,, seconds, a
block for each client request is retrieved and consumed; thus not accumulated.
If T, > Ty, however, data accumulation will occur for. To avoid this
untoward effect, we opt to schedule the blocks to be retrieved in each round. We
call such a procedumdund scheduling Figure 4.4 illustrates a simple scenario

=1,dxT? =2,dxT3 =3,dxT}

1
whered x T, play play play

play

= 1.5.

As shown in this example,, b7, b2, b] are retrieved in the first roundl; andb;
in the second round. As only two blocks are retrieved in the second round, there
exists disk idle time. Hence, the client requests that have failed the admission
control can be serviced during the idle time. For instance, if we assume that four
clients can be simultaneously serviced or that four blocks can be retrieved in a

round, and ifrs with d x T, = 1.5 andrg with d x Ty, = 2 arrive, then the

3Eq. (4.3) is a generalized form of Eq. (3.1) including heterogeneous streams.

53

round: (1) (2) (3)) (5 (6) (7)

T S R L S G

ro b? b3 b2 b2
r3: b b bg
Ty b‘ll bg b% bi bg
s g0 BB
o 0 0 b

time: 0 1 2 3 4 5 6

Figure 4.5: A scenario of efficient round scheduling in a storage node

admission control for these two requests will fail. Requestandrg, however,

can be serviced during the disk idle time. Figure 4.5 shows a schedule for this
scenario. Further analysis of these cases results in the following theorem. Let
Q = {ili = 1,2,---; index for client requesisandk; = T7;:" /T, .

Theorem 4.1 It is possible to service a new requegteven when the admission

control fails, if the following relationships hold:

Y ki < 1landaeqQ. (4.4)
1€Q

Proof: k; for r; is the number of blocks retrieved in a round d@nd 1. If there
exists() such thaty>,., k; < 1 then the blocks fof{r;|i € @} can be retrieved.
That is, forr;, i € Q, k;/knmin blocks are retrieved once evetyk,,;, rounds,
wherek,,;, = min;cq(k;). When the values df;/ k..., is not an integer value, the
values are toggled betweén; /k,,;,,] and | k;/kmin |, SO thatk; /k,,., blocks are

retrieved once every/k,,;, rounds on the average. Thyscan be serviced. O

54

1000

No scheduling
800 ; Retrieval scheduling

600

4001

Number of clients

200r

e
8 16 32

Number of disks

64 128
Figure 4.6: Effect of the retrieval scheduling

Let us apply Theorem 4.1 tg, andrg of Figure 4.5. Sincé, = 1/2, k3 =
1/3, ks = 2/3, k¢ = 1/2, there exist); and@)- for r5 andrs, respectively, such
that@, = {3,5}, Q2 = {2,6}. Hencer, andrs are serviced every other round.
A block for r; and two blocks for; are retrieved in three rounds, and these three

rounds are repeated.

In consequence, Eq. (4.3) and Eq. (4.4) can be integrated into the final ad-
mission control criteria. Figure 4.6 shows the effect of the proposed retrieval
scheduling algorithm quantitativelyWe can find from Figure 4.6 that integrating
Eqg. (4.4) to the admission control criteria increases significantly the number of

clients that can be serviced simultaneously (akliott10%).

4We assume the following parametefB;..;_mae. = 25msec,B = 60KB, R = 2MB/sec,

T¢ =uniform (200,440)msec.

play

55

4.2.3 Communication scheduling

In the previous section, we described the guaranteed retrieval of disk blocks in
storage nodes. These blocks must also be transmitted to network nodes in a de-
terministic fashion over an interconnection network. For further discussion we
choose Omega network [Lawr75] as a candidate network in the parallel server.
This multistage interconnection network has a property that each data block to be
sent through the network involves a unique path between source and destination.
Thus, for a given set of blocks it may not be transmitted simultaneously because
some of the blocks may conflict with one another. To resolve such conflicts we
may need to partition a sétof conflicting data blocks inté subsetssSy, - - -, Sk,

such that each subset is conflict-free [Bern93].

First, we consider communication patterns in the server. The parallel server
distributes video streams across all storage nodes and proceeds in periodic rounds
at storage and network nodes. During a round, each storage node must transmit to
network nodesn data blocks prefetched in the previous round. While delivering
video data to network noded,storage nodes generate x d (src, dest) pairs,
wheresrc anddest denote a source and a destination, respectively. In our envi-
ronment, source means storage node and destination does network node. Upon
clients’ arrival at network nodes, requests are evenly distributed and then sent to
storage nodes for service; so the amount of data blocks that a network node re-
ceives in return from storage nodes is the same as that of the other network nodes.
Therefore, inm x d (sre, dest) pairs, each value ofrc anddest occursm times

exactly whereas the value efc anddest ranges frond tod — 1.

We now describe the communication scheduling algorithm. A round is divided

56

into ! x d slots, and a data block is transmitted within a slot. For source hode

data blocks are scheduled as follows:
(i,z’),(i,z’+1)---,(z’,d— 1),(@',0),---,(@',@'— 1),---

It can be shown that all data blocks are transmitted during a round without conflict

based on the following theorem.

Theorem 4.2 For a setS of d x d (sre, dest), 0 < sre < d, 0 < dest < d, pairs
of communication pathsy can be partitioned into the followin§,’s which are

conflict-free:

Se={(i,li+ka)|0<i<d}, 0<k<d

Proof: S can be partitioned intd;’s and it can be obtained from [Lawr75] that

Sk, 0 < k < d, is conflict-free. Therefore, the theorem holds. O

To our knowledge, there exist only one study on communication scheduling
between storage nodes and network nodes for video servers. Reddy [Redd95]
addresses the issue of scheduling communication over the multiprocessor switch
for the playback of video streams. He argues that the proposed solution including
disk placement makes video scheduling very simple: If the first block of the video
is schedulable without network contention, the solution guarantees that there will
be no network contention during the entire duration of video playback. Compared

with the solution, our communication scheduling is much simpler: We need not

5In the following equation, We define= [z],if z = a-d +y, 0 < y < d, for all integer
values.

57

4 retrieval . communication | N

scheduling scheduling
\ []
[© [—=IT T0O]
[——
Client
Storage node Network node
Roundi-2 Roundi-1 Roundi . buffers
\\ oundi- oundi- J

Figure 4.7: Data flow in a parallel server

check if even the first block of the video is conflict-free because the slot-based
schedule always guarantees freedom from conflict. Furthermore, the proposed
communication scheduling is designed for heterogeneous streams of which the

playback rates are different from each other, while the solution in [Redd95] is not.

In general, considering that the link bandwidth of interconnection networks
is larger than that of disks, a storage node can transmit morerthblocks to
network nodes, otd > m. Whenld > m, the admission control criteria we
described in Section 4.2.2 can be applied/dlf< m, communication network
becomes a bottleneck in the parallel server, and a new client who demands that a
storage node retrieve more thahblocks should be rejected. Whenequalsld,

the utilization of all links in the network reach&g0%.

Since one of the major objectives of designing video servers suggests that they
service as many clients as possible, sufficiently large buffers have been assumed
for the scheduling algorithms. We now observe the buffer requirement of parallel
server. A data flow in parallel server is depicted in Figure 4.7. Since the schedules
generated by disk scheduling and communication scheduling are different from

each other, we employ the double buffer scheme at both storage node and network

58

server

a set of nodes cluster o video streams
distribution

server
cluster

replication
how to cluster? server P

cluster

Figure 4.8: Problem description on the configuration of a large-scale server

node. For this reason 4 buffers per client are required in the parallel server for
deterministic service guarantees. The effective management of shared buffers,

however, will decrease buffer requirements.

4.3 Configuration of a large-scale server

We now examine the configuration of a large-scale video server for given nodes.
Figure 4.8 depicts the given problem. When a large number of storage nodes are
given, we intend to find the optimal configuration of the large-scale video server
through a simulation study. The simulation model is based on the parameters
listed in Table 4.1 that are considered suitable for the proposed large-scale server:
For 640 storage nodes given, data striping across all the 640 storage nodes causes
several problems, as described in Section 4.1. Especially, if we assume the block

size to be 256KB, service latency will be larger than 300 seconds from Eq. (4.1).

8In Chapter 3, we encouraged one or two tradks{ 70KB) for the disk block size. Itis based
on the single server architecture, however, in which a disk block is striped across single disks. In
the parallel server architecture, since each storage node is equipped with high-performance storage

59

Table 4.1: Parameters used in the simulation

Number of storage nodes 640
Number of stored video streams 2,000
Stream rate of a video stream| 0.5 MBps

Length of a video stream 80~ 120 min.
Block size 256 KB
Disk bandwidth of storage node 20 MB/s
Link bandwidth of network 20 MB/s

Hence, we need to group storage nodes into server clusters.

While Table 4.1 represents the parameters used in the analysis, performance
analysis is based on a set of various alternatives for server configuration as listed
in Table 4.2. By capacity of a server cluster in Table 4.2 we mean the number
of clients that can be serviced simultaneously in a server cluster and by service
latency the value in the worst case. In average case, the value is much smaller. All
the alternatives in Table 4.2 can service 25,600 concurrent clients when the loads

are perfectly balanced across server clusters.

On the basis of video store rental patterns, it is known that access to video
streams in the server will be highly localized, with a small number of videos re-
ceiving most of the accesses [Cher95]. According to Zipf's Law [Cher95] the
probability of choosing theth most popular one fromM videos isC'/n, where
C=1/14+1/2+1/3+---+1/M). Thus, replicating popular video streams
in server clusters can keep the load of server clusters balanced. In this experi-

ment we allocate 1,000 video streams to server clusters in the round-robin manner

subsystem, a larger block leads to its high performance.

60

Table 4.2: The alternatives in the configuration

Number of server clusters| 5 10 20 | 40 | 80
Number of storage nodes| 128 64 32 | 16| 8
Capacity of a server clustgr5,120| 2,560| 1,280| 640 | 320
Service latency (sec) 64 32 16 8 4

according to their ranking and replicate top ranking videos in all the server clus-
ters. For example, when there are 10 server clusters, each server cluster has 100

unreplicated videos and the top 100 replicated video streams.

First, we carry out the simulation under the worst case assumption that 25,600
clients request concurrently. Video requests are localized according to the Zipf's
distribution. Simulation results are given in Figure 4.9 and Figure 4.10. The
analysis of the graphs results in the following assertions: (1) Replicating popular
videos performs better. It is possible to service 50 to 250 more clients. (2) Until
the number of server clusters becomes 20, the average utiliZzafieerver clus-
ters is close td00%. (3) When there are large numbers of server clusters, there
exist hot spots among server clusters, that is, server clusters which client requests

center around.

Second, we simulate the actual video service with replication. It is assumed
that clients arrive at the server according to a Poisson distribution with mean inter-
arrival time,1/), and that the running time of each video is uniformly distributed
between 80 and 120 minutes. Figure 4.11 shows similar results to Figure 4.9
and Figure 4.10. When the load becomes smaller in Figure 4.11, the average uti-

lization of server clusters decreases. This is because there exist hot spots among

of clients being serviced/ # of clients can be serviced

61

D
o
o

a
o
o
T
|

; No replication
Replication

A
o
o
T
L

Number of clients not serviced
w
o
o
T
1

O L el \- 1 I
5 10 20 40 80
Number of server clusters

Figure 4.9: Number of clients not serviced (worst case)

100
S M . [|
) L N licati i
g 9 - o seplation
2]
E
(8]
g o8 1
(]
]
kS
5 97 1
e
N
> 96 i
2
<

95 Il Il Il Il

5 10 20 40 80

Number of server clusters

Figure 4.10: Average utilization of server clusters (worst case)

62

1004———= —
S \
2 99 N\ ; :
=
0
=
= \
=
[4) F |
g 98 .
(] N
2
o N
c 97+ N -
-2 — 5 Server clusters
a —=— 10 Server clusters
= —#— 20 Server clusters
=] 96 —— 40 Server clusters i
o) —=— 80 Server clusters
>
<
95 | | |
1 2 3 4 5

Mean interarrival time (sec)

Figure 4.11: Average utilization of server clusters (average case)

server clusters whereas the other server clusters (non-hot spots) are under-utilized.
In Figure 4.10, the larger the number of server clusters is, the longer the average
waiting time® becomes. It also results from hot spots where the waiting time is
longer. In addition, since the running time of videos is relatively long, the average

waiting time under heavy load (A = 1, 2) is too long as shown in Figure 4.10.

In summary, given a large number of nodes, clients experience relatively large
service latency when the number of server clusters is small, that is, the size of a
server cluster is large. On the other hand, when the number of server clusters is
large, client requests are not balanced among server clusters, that is, there exist
hot spots, even though popular videos are replicated. Consequently, the tradeoff
of large versus small clusters provides a basis for the design of the most effective
server configuration. As to the size of a server cluster, it can be determined based

on the analysis of tradeoff between the utilization and service latency. In the

8The waiting time includes only queueing delay here.

63

6000

\
5000k "\ 1
— \ —+— 5 Server clusters
] —e— 10 Server clusters
L4000 N\ —+— 20 Server clusters 1
) AN ——— 40 Server clusters
£ N\ —s— 80 Server clusters
©3000(\]
= G
k= ~
S \
= \
2000+ 1
> \
< \
1000+ N 1
0 | B —
1 2 3 4 5

Mean interarrival time (sec)

Figure 4.12: Average waiting time (average case)

example given above, the simulation reveals that the most appropriate size of a
server cluster is 32 storage nodes, since the average utilization of server clusters
is close to 100% while the service latency is relatively small. This value is feasible

by current technologies.

4.4 Queueing analysisof alarge-scale server

Section 4.2 described the architecture, data placement, retrieval and communica-
tion scheduling in each server cluster (parallel server) and we suggested how to
cluster a large number of storage nodes into parallel servers in Section 4.3. Then
a big picture of large-scale video server can be re-depicted as shown in Figure 4.1.
Each server cluster in Figure 4.1 provides individual services for each client. This

section propose a queueing model of the large-scale video server with a parallel

64

server being an independent service entity and analyze its performance.

4.41 Queueing model

As mentioned above, Figure 4.1 represents the system which we intend to model.
A large-scale video server in Figure 4.1 can be modeled as an open queueing net-
work model in Figure 4.13. The queueing network consist&/of 2 queues {/

server clusters and access network input/output)’@maput processes. The pro-
posed model has two assumptions for easy calculation. First, the packet request
pattern of clienC; is a Poisson process with parametefl < i < N). Variable

bit rate streams such as MPEG are modeled as Poisson processes in the literature
[Tewa96a]. Second, the service time in each queue has exponential distribution.
Then all the queues in the network are M/M/1 queues as folldwBoisson pro-
cesses are superposed on network input queue into a new Poisson process with
parameten. = SN \;. Next, the output process of network input queue is also

a Poisson process with parameteaccording to the Burke’s theorem [Harr93].

The Poisson process is decomposed and arrives at server dusteh proba-

bility p; (1 < i < M). The output processes of server cluster queues are also
superposed on network output queue into a new Poisson process with parameter

A. In summary, each queue in Figure 4.13 is modeled as follows:

e network input: MIM/LA = SN\, fniy Pri = N/ i
e server clustef;: MIM/1, p; A, ps,, ps, = piX/ s,

e network output: M/IM/L\, finos Pro = A/ fino

65

s,

Hno

v

ANmLt

v

Figure 4.13: Queueing model of a large-scale server

We now intend to derive the distribution of response time in the network of
gueues for each request of clients and to examine whether each data packet meets
its deadline. In other words, we calculate the probability that each packet request

is not serviced within its deadline, which is given by

P[packet loss= /D ” fw (t)dt, (4.5)

wherefy, () denotes the probability density function (pdf) of response fitha

the network of queues arld represents the deadline of each packet request, or the
playback time of a data packet. LBt,;, Wy, andW,, denote the response time

in network input queue, server cluster, and network output queue, respectively.
From the analysis of M/M/1 queue [Alle90], we obtain the pdf’s of response time

of each queue in the network:

ani (t) = Iunz(l - pni)e_“ni(l_pni)t
fws, (£) = ps, (1 = pg,)e sl est (4.6)
fVVno(t) = /LTLO(]- — pno)efﬂno(lfpno)t (t 2 O)

66

The total response time in the network is given by
W =Wy +Ws, + W,,. 4.7)
Then, fy(t) is calculated by convolvingw,, (¢), fws, (t), and fw,, ():
fw(t) = fw,.(t) © fws, (t) © fw,, (1) (4.8)

The complexity of convolution operation is very high. So, we now defiyét)
from the Laplace transformation technique [Klei75]. The Laplace transfgyts)
of fu (t) is obtained from Eq. (4.8) as follows:

By (s) = Fyy,,(s) - Fyyg (s) - By, (5), (4.9)
whereFy, (s)(k = ni, S;, no) is given from Eq. (4.6) as
Fir, () = [Rl "dt = pu (1= p) [l = p) +5) (4.10)
Finally, we getfy () by the inverse-Laplace transformatfasf Eq. (4.9):
fw(t) = Bie=™" + Bye *' + Bye *' (4.11)

a1 = pni(l = pni) a2 = ps,(1 = ps;) a3 = pno(1 — pno)

B — a1a2a3 — a1a2a3 B — a1a2a3
1 (az—a1)(az—a1) 27 (a1—a2)(az—az) 3 7 (a1—a3)(az—a3)

The correctness of Eq. (4.11) can be validated from Eq. (4.12).

a a2 as

= E(Wy) + E(Ws,) + E(Wy,) (4.12)

9We employ the inspection technique [Klei75] here.

67

Table 4.3: Parameters used in the analysis

Symbol Description Values
N Number of clients
M Number of server clusters 10
R, Stream rate 1.5Mbps
R, Access network bandwidth 1 ~ 10Gbps
R, Disk bandwidth in a server cluster 10 ~ 100MB/s
B,., | Request packet size 1KB
Baue | Data packet size 256KB
Di Probability that a client is serviced &t 1/M
k read-ahead 2

Consequently, from Eq. (4.5), the probability that each packet request is not ser-

viced within its deadline is derived as

P[packetlosp = /D ” fw (t)dt

B B B
= ZlemwD j Z2o-aD 4 78 —asD (4.13)
ai a2 as

4.4.2 Performance analysis

This subsection analyzes the performance of large-scale video servers based on
the queueing model described in Subsection 4.4.1. Table 4.3 represents the pa-
rameters which affect the performance of video servers. Parameters in Table 4.3

are applied to the queueing model as follows:

fini Breq » Hno Bdata s Bdata
al R
A= S N=NA, =N (4.14)
i=1 Bdata

68

o
o)
:

o
fe))

—— Queueing model
Simulation

Packet loss probability
o o
N Y

480 490 500 510 520 530 540
Number of clients

Figure 4.14: Validation of queueing model

1 . B data

In Eq. (4.14), we assume that all the clients request the same stream rate of video
streams and that all the server clusters are equivalent to each other. It is also
assumed that the load balancing between server clusters is achieved; /M

for 1 < < M. This must be treated carefully on designing the server.

First, we validate the proposed queueing model through simulation. Given
the same value for each parameter, Figure 4.14 shows that the queueing model
is quite correct. Especially, it is meaningless when the packet loss probability is
greater than 0.2. We describe the results of queueing analysis in the rest of this

subsection.

The parameters which greatly affect the performance of large-scale video servers
are the disk bandwidth/{;) and the access network bandwidf®,]j. Since the

access network bandwidth is closely related with the number of server clusters,

69

6000 %

4000

ients

Number of cl

2 20
Network b/w (Gbps) 110 Disk b/w (MB/s)

Figure 4.15: Effect of disk and network bandwidth

it is considered carefully on the design of large-scale video servers. That is, the

following condition should be met:
R, > Ry x M (4.15)

The effect of disk and network bandwidth is given in Figure 4.X5axis repre-

sents the number of clients that can be serviced simultaneously while the packet
loss probability is less than 0.05. As shown in Figure 4.15, the more clients can
be serviced as the disk and network bandwidth increase. However, either of them
may be the performance bottleneck; so, the proper values for them should be de-

rived, which can be known from Figure 4.15.

Figure 4.16 depicts the effect of read-ahead paraniet€he deadlineD can
be increased by readirigdata blocks ahead; the packet loss probability decreases.
As expected, the largérperforms better, but the performance gain decreasks as
increases. Since the buffer requirement also increasesnaseases, we believe

that 2 or 3 read-ahead is the most appropriate. On the other hand, Figure 4.17

70

o
o)

o
o))

Packet loss probability
o o
N S

480

o
o)

o
fe))

Packet loss probability
(=} o
N S

480

XX XX
o nn
P WNBE

490 500 510 520 530
Number of clients

Figure 4.16: Effect of read-ahead

540

490 500 510 520 530
Number of clients

Figure 4.17: Effect of data block size

71

540

demonstrates that data block size does not affect the performance of video servers
in the analysis. This is because the disk bandwidth is fixed. As described in Chap-
ter 3, data block size is closely related with the disk bandwidth. We can conclude
from Figure 4.16 and Figure 4.17 that, if the disk bandwidth is not dependent upon

data block size, the large read-ahead is desirable rather than the large block size.

72

Chapter 5

Storageand retrieval in a

multi-resolution video server

Video can be encoded into multiple-resolution format in nature. Recent advances
in video coding technology make it possible to create a multi-resolution or scal-
able video stream. In general, a multi-resolution video stream permits the extrac-
tion of lower resolution subsets of the full resolution stream that may be decoded
independently. Employing the multi-resolution video in video servers provides
the following benefitsheterogeneous client support, sige eficiency, adaptive

service, and interactive operations support

First, clients in a video service are likely to request various QoS parameters,
such as color depth, window size, and frame rate, because they have different
decoding capabilities and network bandwidth connected to the server. Second,

servicing single (full) resolution video streams for a wide range of clients results

73

in wasting server resources such as disk and network bandwidths. Since multiple
versions with different resolutions for each video stream lead to storage ineffi-
ciency, it is required to employ scalable video. Third, on the transient overloaded
condition, the server is able to provide adaptive services by gracefully degrading
the resolution levels. Furthermore, even when the admission of new clients fails,
the storage of scalable video permits the server to gracefully degrade the resolu-
tion levels of existing clients in order to service new clients. In addition, the server
can provide adaptability to the fluctuation in network bandwidth, which is one of
fundamental problems in mobile computing environment [Cho97c, Cho99a]. Fi-
nally, the lower resolution streams enable the server to efficiently support interac-

tive operations such as fastforward and rewind.

In this chapter, we present a design framework for video servers which provide
multiple resolution services: multi-resolution video model, server model, data
placement and retrieval of multi-resolution video, interactive operations support,
and admission control. We also describe implementation experiences of multi-

resolution video server.

51 System model

5.1.1 Multi-resolution video stream model

In general the notion of video resolution is defined in three dimensions: chroma,

spatial, and temporal. In these dimensions, video streams can be compressed into

74

component segment

Figure 5.1:z-level multi-resolution video stream model

multiple-resolution format by various scalable compression algorithms. A multi-
resolution or scalable video stream is a video sequence encoded such that subsets
of the full resolution video bit stream can be decoded to recreate lower resolution

video streams.

For the purpose of modeling multi-resolution video streams, we propese a
level multi-resolution video stream model in Figure 5.1. A multi-resolution video
stream is a set of segments in which a segment consistsamhponents. In other

words, for a video strea,

V. = {S]|Ssisasegment) < s <[}

Sy, = {C:|C:isacomponent0 < ¢ < z},

where s and ¢ denote the segment number and the component number, respec-
tively, and! is the number of segments, or the lengthlaf The k-level res-
olution can be obtained by integratiigcomponents from the lowest one; so,
{C5]10< s <, 0<c<k}areserviced. In the multi-resolution video model,
each video stream can be provided witlevels of quality and the QoS parameter

is represented by the number of components in a segmeht, Bull resolution

quality dictates the use of all the components.

The multi-resolution video stream described above can be implemented by

various coding technologies. The current scalable video compression techniques

75

include DCT-based schemes, subband (wavelet) schemes, fractal-based schemes,
and object-based schemes [Hunt]. First, of the standard codecs, only MPEG-2
[ISODb] addresses scalable video streams. Four techniques, namely data partition-
ing, SNR scalability, spatial scalability, and temporal scalability, can be used.
Since a frame consists of multiple layers, a frame can be mapped to a segment
in the proposed video stream model and the sub-layers of the frame constitute
components of the segment. Alternatively, multiple frames may be mapped to a
segment because a large storage/retrieval unit is beneficial to the disk performance
[Chan97]. For example, Paek al. [Paek95] implement a three layer MPEG-

2 video stream. In their scheme, the base layer provides the initial resolution
video while an additional spatial enhancement layer allows for the upsampling
and hence increases in frame size of the base layer. A further SNR enhancement
layer provides increase in the visual quality of the bas@atial enhancement lay-

ers of video. One possible mapping from their video stream to our model is that a

group-of-picture (GOP) corresponds to a segment, that is,

V = {S,|S,=GOP, 0<s<I}
S, = {C*|C*=GOP, 0<c< 3},

where GOP denotes the-th GOP. The components GQRSOF,, and GOR are
the base layer, the spatial enhancement layer, and the SNR enhancement layer for

GOP, respectively.

MPEG-1, which is another DCT-based coding scheme, can also exploit scal-
ability techniques such as data partitioning with slight modification in existing
codecs [Shen95]. In addition, without modifying codecs, we can reconstruct

MPEG-1 video into the multi-resolution video model in temporal dimension as

76

follows: (1) A GOP is mapped to a segment. (2) Aframe is the first compo-

nent in a segment. (3y frames constitute the next one or more components. (4)

B frames constitute the rest of the components in the segment. This is similar to
a rearrangement scheme of Chang and Zakhor [Chan94] which stores the frames

within a GOP in a specific order.

Taubman and Zakhor [Taub94] propose and implement a scalable codec capa-
ble of generating bit rates from tens of kilo bits to several mega bits per second
with fine granularity of available bit rates. The codec is based on 3-D subband
coding and multi-rate quantization of subband coefficients, followed by arith-
metic coding. Chang and Zakhor [Chan97] use 11-layer scalable video streams
produced by the codec which range from 190 Kbps and 1330 Kbps in their work
for storage and retrieval of scalable video. We can reconstruct the video streams
into the proposed video model in the same way as the scalable MPEG-2 which is

described above.

Bogdan [Bogd94] proposes a multi-scale fractal video coding. The scheme
combines the still image pyramid coding and the ITT (iterated transformation
theory) inter-frame video coding methods to generate a hierarchy of bit-streams.
MPEG-4 is scalable in the sense that multiple objects can be added or removed
to compose a frame. The fractal-based and object-based coding schemes are also
consistent with the proposed model. Consequently, we can conclude that we can
utilize ‘off-the-shelf’ technology in order to implement the multi-resolution video

stream model.

77

CPU

system bus

disk 0 disk 1 disk d-1

network
node 0

storage
node 0

interconnection
network

storage network

node d-1 node d-1

(a) single server (b) distributed server (c) parallel server

Figure 5.2: Architecture of multi-resolution video server

5.1.2 Server model

As described in Chapter 3 and Chapter 4, video servers range from a standard PC
for small-scale systems to massively parallel or distributed computers for large-
scale systems (see Figure 5.2). The architecture in Figure 5.2 can be modeled into
a disk array model where the server ldadisks and video data are striped across
the disks. In distributed or parallel servers, a disk corresponds to a disk subsystem
of each node. In this chapter, we assume the disk array model for the multi-
resolution video server architecture and consider the large-scale case (distributed
or parallel server) for system parameters. Many works are also founded on the
model but most of them conduct the worst case analysis for the performance of a
disk (i.e. the maximum seek time and rotational latency). This may underestimate
the disk performance. Furthermore, the analysis is not directly applicable to the
RAID disk subsystem in distributed or parallel servers. For flexibility, we consider
only the effective bandwidti® for the performance of a disk subsystem. The
value can be measured from a calibration program that determines the maximum
number of blocks that can be read within the given time interval [Maka97]. For

convenience’s sake, we use term ‘disk’ instead of ‘disk subsystem’ in the rest of

78

this chapter.

The operation of video servers is re-described briefly. A video server proceeds
in periodic rounds due to its periodic nature. In each service round of which the
length isT,...4, @ Video server retrieves the required amount of data with respect
to its playback duration and transmits them to remote clients. A double buffer
scheme enables the disk and network bandwidths to be effectively utilized. In
other words, in each round, data are retrieved to maximize the disk performance
and the transmission of data retrieved in the previous round is performed to ensure
the real-time playback capability considering the buffer space of each client. As-
suming that the network bandwidth is large enough for the transmission, we are
concerned about the effective disk bandwidth management for multi-resolution

video data.

5.2 Data placement for multi-resolution video

The performance of video servers is closely related with data placement. A data
placement scheme should explore the followings: First, it should provide deter-
ministic access for simple retrieval scheduling. Second, the performance effi-
ciency should be considered such as throughput and service latency. Third, it
should support interactive operations with reasonable cost. Next, the disk load
balancing should be achieved so that the server may be able to fully utilize the

aggregate disk bandwidth.

Before placing data on disks, we first have to determine storage units by which

79

data are written to or read from disk. Constant bit rate (CBR) video streams re-
quire the equal amount of data in each round, but variable bit rate (VBR) streams
do not. There exist two methods for VBR streams [Chan97]. The constant time
length (CTL) method is to store and retrieve video data in unequal amounts with
respect to its real-time playback duration. In contrast, the constant data length
(CDL) is to store and retrieve data in equal-sized blocks while utilizing buffer
memory to provide real-time playback. The former provides advantages in buffer
usage and disk throughput but has the fragmentation problem. The latter is consis-
tent with the current disk storage technology, but requires large buffer space and
complicated retrieval scheduling. In order to alleviate the problems, we can em-
ploy a hybrid method in which data are stored in fixed-size blocks, but the number
of blocks to be retrieved varies with the playback duration. The CTL method is
more efficient in a read-only environment such as VOD because it reads a large
chunk of data contiguously while there exist seek operations in the hybrid method
[Chan97]. On the other hand, the hybrid method is a viable approach for the
design of integrated multimedia file system where multimedia data are created,

edited, and deleted frequently [Vin95].

We model the hybrid approach in consideration of flexibility and allocate a
variable number of fixed-size blocks for a component, thatiis;(C?) = b B,
where B denotes the disk block size. However, if we choose the smallest al-
location unit for B (one sector, or 512 bytes) and place blocks in a component
contiguously, it results in the CTL scheme. We follow this assumption for the
analysis in the rest of this chapter, because we target a video server where read re-
quests are dominant. As for the component size(C¢) in the multi-resolution

video stream model, we construct a segment based on the round Epgth

80

Disk Disk

o, 1, 2, 3 0,1,2, 3
T T
0 - AR e
| | | | | 1
1 L IS 5
1 H K L Ss
| | | | | |

So S Sy S
(a) concurrency (b) parallelism

Figure 5.3: Striping strategies: concurrency vs. parallelism

so that a segment is serviced in each round. This leads to a large and logically

contiguous data chunks, and hence, the high disk throughput can be achieved.

We now intend to place multi-resolution video data on a disk array. There
exist two straightforward strategies which explore different aspects of the concur-
rency and parallelism offered by striping data across disks, as depicted in Figure
5.3. The degree of concurrency is defined as the number of outstanding requests
at one time and the parallelism describes the number of disks that service a single
request. Chang and Zakhor [Chan94] propose the periodic interleaving scheme
using the concurrency of multiple disks and Paeé&l. [Paek95] define the second
strategy (parallelism) as the balanced placement scheme. The periodic interleav-
ing scheme accesses only one disk in a round for a segment and, in the balanced
placement, a segment is divided int@qual amounts of data and placed over all
d disks.

Two extremes of data placement show a tradeoff of disk throughput versus

service latency. The periodic interleaving scheme achieves high disk throughput

81

due to large and logically contiguous data chunks, but the worst case service la-
tency isd rounds [Paek95] because a service should be delayed considering the
load balancing of disk bandwidthThe service delay consists of the waiting time
plus one round for filling a buffer in the double buffer system. On the contrary,
in the balanced placement, Pastial. argue that the service latency is one round

all the time although relatively small data chunks cause to lower disk through-
put. They also present a hybrid multiple segmentation scheme, on the basis of the
tradeoff analysis. In the scheme, they define a segmentationdevkich repre-

sents the degree of parallelism. Each segmentation grodfsks) are performed

in parallel andi/S disks concurrently.

However, all the schemes are based on full-resolution services. For lower res-
olution services, a small quantity of data are retrieved in the periodic interleaving
and a subset of disks participate in the retrieval in the balanced placement scheme.
Hence, both schemes cannot guarantee their advantage (i.e. throughput and ser-
vice delay, respectively) in lower resolution services. In addition, they do not
consider the disk access boundaries for each component, so that each component
in a segment is not accessible independently. Furthermore, the load balancing

issue of disk bandwidth for VBR streams is not described.

To take advantage of both of concurrency and parallelism for each resolution
services, we place each segment of a video stream in parallel but each component
in a segment concurrently. In other words, since the independent access unit is
a component, we place each component contiguously in a disk and components
in a segment are striped across disks. The finer storage granularity provides the

advantages over the periodic interleaving scheme: better load balancing and less

We also mentioned in Chapter 4.

82

Table 5.1: Advantages of the proposed data placement scheme

over the periodic interleaving over the balanced scheme

finer storage granularity sequential and independent access

better load balancing to each component

less bandwidth fragmentatignoad balancing on lower resolution services

disk bandwidth fragmentation. Disk bandwidth fragmentation refers to a situation
where the available bandwidth in each disk is not sufficient to accommodate an
incoming request, although there is sufficient aggregate bandwidth across disks in
the array [Chen95]. On the other hand, the proposed placement scheme guaran-
tees the sequential and independent access to each component, which the balanced
scheme does not provide. The balanced scheme incurs the load imbalance prob-
lem on lower resolution services because the lower resolution components are

placed on the same disk (see Figure 5.3).

In summary, by taking the hybrid approach of two strategies which explore dif-
ferent aspects of the concurrency and parallelism offered by striping data across
disks, the proposed placement scheme has the advantages over the periodic inter-

leaving scheme and the balanced scheme, respectively, as shown in Table 5.1.

We begin by introducing an example of data placement in Figure 5.4. Three
cases are identified according to the resolution level of streamd the number
of disksd. First, in case ot < d, components in a segment are distributed across
all the disks and successive components are placed on adjacertt diskst,
for the disk load balancing, the first components of successive segcatsl

Sit1 (i.e.,C} andCy™) are assigned on adjacent disks(djsknd diskj + 1), as

°The adjacent disk of dis& — 1 is disk 0.

83

disk O 1 2 3 disk O 1 2 3 4 disk O 1 2

o I e e o/ e e e UV Oy
i 03 Cy CI Cy W C; O Cy Cy Vi C) C; Of
c; C; Ci CF C3 ¢y Cf O3 Cy, O3 Cf

ct o3 3 Y c; C3 cs Cf ¢t 03 CF

U Cy OV O U Y 0y Y o e/ e

V. ¢y C3 Gy O V» G C; Ci C3 V» CI CY Cj
cy 03 C3 G cy O3 ¢y Cf cy Oy Cy

(O SN CNNE S ct 03 3 cs c; Cf O3
@z = d)z < d ©z > d

Figure 5.4: An example of data placement for multi-resolution video

shown in Figure 5.4(a) and 5.4(b). In addition, we distribute the starting point (the
first component in the first segment, Gf) of each stream across disks for load
balancing when multiple streams are requested concurrently. For the serVice of

in Figure 5.4(a) with the second level resolution, for example, the first segment is
retrieved from disk 0 and disk 1 andC?, respectively) and the second from

disk 1 and disk 2} andC}). Next, whenz > d, multiple components in a
segment may be placed on a disk. However, the strategy is similar to the case of
z < d. That is, successive components in a segment are placed on adjacent disks
and the first components of successive segments are assigned on consecutive disks
as depicted in Figure 5.4(c). The data placement scheme allows deterministic
access to disks. For = {C¥ | 0 < s < [, 0 < ¢ < 2}, the disk which contains a

component’ is calculated as follows
D(C?) = [s + ¢ + StartDisky|q, (5.1)

where Start Disky indicates the disk in which the starting poirity) of V is

3In Eq. (5.1), we defing = [2]4if 2 = a-d +y,0 < y < d, for all integer values.

84

stored.

We now show the disk load balancing property of the placement scheme. Since
the number of concurrent clients in a video server with multiple disks depends on
the most heavily loaded disks [Vin95], this issue should be examined carefully.
LetV;, denote a set of components retrieved in didkringk-level service ofl.

From Eq. (5.1), we obtain

Vie ={C: | D(C]) =1,0<s<1,0<c<k}. (5.2)

Theorem 5.1 Given the parameters abov#), ;| is given as follows:

Vikl = H xk+a (0<a<d) (5.3)

Proof: See Appendix A. O

Theorem 5.1 indicates that, regardless of the resolution level of video service,
components are evenly distributed across all the disks. Disk load balancing in
CBR video streams can be directly derived from Theorem 1 because CBR streams

have equal-sized componentsséfe(C%) = bB,0 < s < [,0 < ¢ < z.

When a VBR scalable coding algorithm is employed to obtain the compres-
sion efficiency, the size of each component varies, thatiis;(C?) = biB is
not constant. This may lead to the load imbalance. In [Shen98], Shenoy and Vin
suggest a scheme in which the block size can vary across sub-streams (lower reso-
lution streams) but is fixed for a given sub-stream to maximize performance. This

can be realized in the multi-resolution video stream model by fixing the number

85

of blocks in the same component level,igr= b., 0 < s < [. The number of

blocks for storing components # ., or n(V; ;) is calculated from Eqg. (5.3).

k—1
i - £E -5 % 4
s ¢ Cseviy c=0 \s,C2eV;

Q

k—1 I
> M b (5.4)
From Eq. (5.4), we can observe that the disk workload in VBR streams is also
evenly distributed for any resolution video stream. Even whjers variable in

the same component level, it is expected that the following equation holds statis-

tically:
k—1
n(Vig) = VJ Elb], (5.5)

c=0
where E[b] is the mean ob; for 0 < s < [, or E[b.] = 7 >_(bs. We will

validate Eq. (5.5) through experiments in Section 5.4.

Observe that we achieve the disk load balancing for a given resolution video
service. However, we have to consider another load balancing issue for the work-
load induced by concurrent clients. The issue should be treated in the retrieval

scheduling upon startup or interactive operations.

5.3 Dataretrieval for multi-resolution video

As mentioned earlier, a video data retrieval proceeds in periodic rounds. In the
multi-resolutoin video server, multi-resolution video data are constructed such
that a segment is played back fbr,,,4. So, for each video streah}, a segment

is serviced in a round, and hendecomponents are retrieved in parallel across

86

Procedure Scheduler;

input: V; = (kj, 55, K, StartDisky , direction), 1 < j < N
output: D;, a set of components to be retrieved from digk a round
begin

1 clearD;

2: forj:=1toN

3: for m:= 110 K

4. forc:=0tok; —1

5: if ([s; + ¢+ StartDisky,]q = 1)

6: insertCy’ into D;

7: end if

8: end for

9: s; = s; + direction

10: end for

11. end for

end

Figure 5.5: Scheduler at digk

disks fork-level resolution service. Since the data placement scheme proposed in
Section 5.2 allows deterministic access for each component, each disk can retrieve

data independently.

In Figure 5.5, we present a simple retrieval scheduling procedure performed at
disk: in each round. The input parameters of a video stream consist of its resolu-
tion level (;), the current segment number), the number of segments retrieved
in a round (<;) which is one in normal playbackitart Disky;, and playback
direction which is set to 1 or -1 according to forward and reverse playbacks, re-
spectively. The scheduler generates a set of compofigtdsbe retrieved from its
disk in each round. In Line 6 of Figure 5.5, we can incorporate a disk scheduling

algorithm to optimize the performance of its disk subsystem.

87

While each disk performs data retrieval independently, we have to schedule
the requests of clients globallyequest schedulingas mentioned in Section 5.2,
so that the disk workload induced by concurrent clients may be evenly distributed
across the disks. The strategy is to delay the start point of service considering the
disk load balancing. Since the workload in a disk is shifted to the next disk in
the next round, we can calculate the average workload in each disk for the next
rounds ¢ < d). One observation is that the maximum number of blocks retrieved
in a disk should be minimized, because the most heavily loaded disks determine
the number of clients that can be serviced simultaneously. We delay the start
point of service until the maximum number of blocks retrieved in each disk is
minimized. The worst case service latency r@unds. The look-ahead parameter
r presents a tradeoff between disk load balancing and service latency. We assume
r = d in the rest of this chapter because it is worthwhile to increase the number
of concurrent clients at the expense of acceptable service latency in video servers.
We present an experimental result in Section 5.4 which shows that the number
of concurrent clients increases significantly at the expense of acceptable service

latency.

5.3.1 Support for interactive operations

Interactive operations are essential for video services. Clients are likely to per-

form VCR-like operations on video they are watching, such as pause, resume,
fastforward, rewind, and slow playback. Fast scan operations, namely fastforward
and rewind, should be treated carefully because they require additional server re-

sources. In general, two approaches support them: encode separate streams and

88

skip frames. The first approach needs extra storage space and the second approach

may lead to load balancing problems [Lee98].

The multi-resolution video server supports fast scan operations without any
additional overhead by degrading the resolution level and retaining the data rate
of the video stream. For example, let us assume that a fastforward operation is
requested for a video stream with the fourth level resolution. If we lower the res-
olution level to the second level and the first level, the two-times-fastforward and
the four-times-fastforward can be accomplished, respectively, without any addi-
tional disk and network bandwidth. Shenoy and Vin [Shen98] validate this idea
by a scalable encoding technique in which the low-resolution-based sub-stream
provides acceptable video quality for scan operations. For the case of low resolu-
tion level where it is impossible to degrade the level, a segment skipping scheme

[Chen94] can be integrated with our scheme.

The scheduler in Figure 5.5 can be updated in order to support interactive
operations as follows. We assume that an interactive operation is requested to
Vi = (kj,s;, Kj, StartDisky,, direction). All interactive operations are sup-

ported simply by reconstructing the input parametersof

Fastforward The new input parameters are givenify= (k}, s;, K, StartDisky,,
direction'), wherek; = k;/m, K;- = mKj, anddirection’ = «a. In this
case, we can achieve - a-times fastforwart Whena > 1, the segment

skipping scheme is employed. For instance, when four-times fastforward

. Ry. k. . . .
4In more detail, RV”kj - a-times fastforward is achieved, whefey;, denotes the average

Viok)

playback rate of” with k resolution service.

89

is requested td; = (4,1000, 1,0, 1) that is being played back with forth-
level resolution, we can obtali; = (1,1000,4,0,1). In addition, when

V; = (1,2000,1,0,1) (i.e. normal playback with first-level resolution),
the segment skipping scheme is incorporated/}')yt (1,2000,1,0,5) for
five-times fastforward. As mentioned above, the segment skipping scheme
leads to disk load imbalance wharandd have the least common multiple
(LCM). For example, consider a video server having four disks in Figure
5.4(a). For two-times fastforward af; = (1,0,1,0,1), V; is given to
(1,0,1,0,2). Then the server retrieves a sequenc€®fCz, Cg, C§, - - -,

so that disk 0 and disk 2 will handle all the retrievals. This problem can be

solved by selecting such thatx is relatively prime tal [Kwon97].
Rewind This is equivalent to fastforward exceptrection’ = —a.

Slow playback Reducing the number of segmems accomplishes the slow
playback, orK; = K;/m for m-times slow motion. Wher; < 1, V;
is excluded from the input list of the scheduler urti] > 1, whereL;
(initially K;.) Is increased by(;- in each round and decreased by one when

L;>1.

Pause and resume The scheduler excludé$ on pause and includé§ again on

resume.

5.3.2 Admission control

A video server must employ an admission control algorithm to decide whether a

new client can be serviced without violating the real-time requirements of clients

90

already being serviced. Since a CBR video strdgnproduces a constant disk
workload (z; blocks) in each round, we can employ a simple admission control
algorithm which checks if all the blocki“(;-‘f:1 n;) for N streams can be retrieved

in a round. For VBR streams, the simple algorithm maymuse- maazogm(nj.)

or avgo<i<s(n’), wheren' is the number of blocks to be retrieved in thth round.
However, this causes to under-utilize or over-utilize the server resources, respec-

tively.

Admission control algorithms for VBR streams may be classified into two
categories: statistical and deterministic. The first approach exploits the bit rate
statistics of video streams and the second approach does the specific knowledge
of the bit traces of video streams. Mat al. [Vin94] propose a statistical admis-
sion control algorithm with a mechanism enforcing statistical service guarantees.
They compute the overflow probability, which is the probability that the service
time for a single disk access exceeds the round duration, by determining the total
number of blocks in a round statistically and empirically measuring a distribution
function for the service time. Chang and Zakhor [Chan97] calculate the probabil-
ity of overload by integrating the probability density function of the aggregated
resource required by all clients beyond a given threshold limit. The threshold
limit is computed from a single disk performance analysis on their data placement
schemes. Makarofét al. [Neuf96, Maka97] propose a deterministic admission
control algorithm based on the stream block schedule which contains the num-
ber of blocks to be retrieved in each round. The admission of a new stream is
accomplished by merging the stream block schedule with the existing one and
checking a system overflow during the length of the request. The deterministic

admission control algorithm provides a tight and safe bound for the admission,

91

but its complexity is relatively high.

We now describe an admission control algorithm in the multi-resolution video
server. Assume that clieitfor 1 < j < N — 1 is being serviced witlt ;-level
resolution ofV; and a new clientV requestd/y with ky-level resolution service.
Since each disk must retrieve all the components scheduled in Figure 5.5 every
round for the deterministic service guarantee, the following inequality must be

satisfied in each disk:
n(D;) X B < Thouna®, 0<i < d, (5.6)

wheren(D;) denotes the number of blocks required to stbre In Eq. (5.6),
n(D;) can be calculated deterministically in CBR multi-resolution video streams,
butn(D;) varies from round to round in VBR case. For VBR streams, we attempt

to estimate an upper boumd,,.. of n(D;) statistically such that
Pover fiow = P[n(D;) > nypper] < €. (5.7)
A new clientV is admitted if the following inequality holds.
Nupper X B < Tround® (5.8)

For the statistical estimation of the total number of blocks retrieved in a round for
all clients, Vinet al. use the central limit theorem and Chang and Zakhor compute
the probability density function (pdf) by the convolution of each individual pdf for

a video request. They assume that, however, all the blocks are serviced in a single
disk. In a disk array environment where data blocks are serviced across multiple
disks, their approach may be incorrect. We further describe how to estifiate

in the next section along with experiments.

92

The inherent feature of the multi-resolution video server enables the server to
renegotiate the service resolution level with clients failed in the admission control.
The server can present a lower resolution level which satisfies Eq. (5.8). Further-
more, if it is permissible to degrade the resolution level of existing clients, more
clients can be serviced. Transient degradation may be required for the rounds
in which the actual number of blocks to be retrieved is greater thgn,. If the
scheduler in each disk detects the overflow, it degrades the service level uniformly

across all the clients until Eq. (5.8) is satisfied.

Itis noteworthy that according to Eq. (5.8) the buffer requirement of the server
IS 2n4,pe, B per disk. This value is much smaller than that of the static policy

which allocates the worst-case fixed-size buffer to each client.

54 Experimental evaluation

In this section, we evaluate the proposed schemes through experiments with trace
data generated from actual scalable video streams. As mentioned in Subsection
5.1.1, we consider three VBR scalable compression techniques: MPEG-1 with
temporal scalability, MPEG-2 with spatial and SNR scalability, and 3-D subband
coding scheme. Table 5.2 shows the average bit rate of each resolution level for
three kinds of trace data. To construct the multi-resolution video stream, the round
length T,,.,4 should be determined first. The round length provides trade-off
between disk throughput and buffer requirement. Chang and Zakhor [Chan97]
suggest that the total system cost is minimized,a},,;, of one second from cost

analysis and many other works assume one second,fgx,; [Vin94, Bolo96].

93

Table 5.2: Average bit rate (Mbps) of each resolution level for trace data

Resolution level 1 2 3 4/8 5/9 | 6/10 | 7/11
MPEG-1 (30fps) || 0.18 | 0.8 | 1.5
MPEG-2 (24fps) || 0.32 | 1.152| 3.008
3-D subband (24fps) 0.190| 0.253| 0.316| 0.380| 0.506 | 0.633 | 0.760
0.887| 1.013| 1.140| 1.330

We also choose one second 0¢,,,,4.

5.4.1 Disk load balancing

First, we validate Eq. (5.5) which indicates that the disk workload for any reso-
lution service for a given video stream is evenly distributed across all the disks
even for VBR case. Figure 5.6 presents the number of blocks retrieved in each
disk for 30 minutesi(= 1800). The value of the right-most bar in each graph is
calculated from Eq. (5.5). As shown in Figure 5.6, the proposed data placement

scheme guarantees the disk load balancing for a video service.

Next, to explore the actual behavior of the multi-resolution video server, we
have created an event-driven simulator written in C with SMPL [Mac87] libraries.
The simulator models the server including data placement and retrieval. Along
with three types of trace data for multi-resolution video streams in Table 5.2, the
server is assumed to have eight disks and to store 24 video streams (eight for each
type in Table 5.2). The video streams are placed on disks according to the data
placement scheme with different starting poirféa-t Disk,). We assume that

each client randomly chooses a video stream and resolution level.

94

x 10" MPEG-1

~
T

(=2}
T

o
T

N
T

Number of blocks

w
T

5 6 7 Approx.

o]

Number of blocks

0O 1 2 3 4 5 6 7Approx.
Disk #
x 10° 3-D subband

Number of blocks
w » a (=2
PR OO~NOOORAWNE

SN S)

N
T

0O 1 2 3 4 5 6 7Approx.
Disk #

Figure 5.6: Distribution of disk workloads for a given resolution service

95

4 300 clients

8 x 10
A A A A e
&
Tr I R
6 A 1
” N ——— Disk0
3 7 —— Disk1
35 A ——— Disk2]
2 " -~ Disk3
Syl i’ —— Disk4 |
o f/ Disk 5
-g f ——— Disk6
S 3 N//” —— Disk 7 7
Z K/w —— Total
2r J
/
1r p J
/
O L L L L L
0 600 1200 1800 2400 3000 3600
Round #
(a) No request scheduling
. « 104 300 clients
M}w\mwm NI M VA Iy WM oty J‘V“”‘Wa“ WM
7+ ,,NMM 1
J
(v'\
o /V Disk 0]
e IS
% Mﬂ'/ —— Disk1
o 5r ! —— Disk?2 b
f J ~—— Disk3
o 4F — Disk 4 il
) / Disk 5
2 I ——— Disk6
S 3r vaﬁ —— Disk7)
z “ ——— Total
2r JN/ 1
/f)
1
/J
O L L L L L
0 600 1200 1800 2400 3000 3600
Round #

(b) Request scheduling

Figure 5.7: Distribution of disk workload for 300 clients

96

Figure 5.7 presents the number of disk blocks retrieved in a disk in each round
for 300 concurrent clients. For the first 30 minutes (1800 rounds), clients arrive,
while the services continue for the next 30 minutes. The fluctuation of work-
loads in each disk is very large from round to round in Figure 5.7(a) since we
do not apply the request scheduling. This occurs because the disk workload is
not evenly distributed across the disks in a given time point. At the expense of
service latency, we schedule the start point of services to minimize the maximum
number of blocks retrieved in a disk. By the request scheduling, we can evenly
distribute the disk workloads in each round, so that the variation of workloads in
a disk decreases significantly, as shown in Figure 5.7(b). It should be noted that
the variation of workloads in a disk is smaller than that of the total workloads.
This indicates that more clients can be serviced by the request scheduling since
the most heavily loaded disks determine the number of concurrent clients in video

servers.

5.4.2 Admission control

In Subsection 5.3.2, we described the admission control strategy. Since the num-
ber of blocks to be accessed at disk each round, on(D;), varies in VBR
streams as shown in Figure 5.7, we intend to estimate an upper bojyadfrom

Eqg. (5.7) for the statistical service guarantee. First, we take two existing ap-
proaches in a single disk system: central limit theorem [Vin94] and convolution
[Chan97]. Let a random variable; denote the number of blocks to be accessed

in each round for cliengj. The total number of blocks folN clients is given

byn = Zj-vzl n;. Using the central limit theorem, Virgt al. [Vin94] estimate

97

x10™ 300 clients

6 ‘
5 L 4
—— Simulation
4t — CLT il
Convolution
2
%
83r 1
<
o
2 . -
l L 4
0 L L L
74000 76000 78000 80000 82000
Number of blocks
(a) single disk
% 10" 300 clients, Disk 0
1.5
—— Simulation
— CLT
—— Convolution
1 . -
2
=
©
Q
o
o
0.5F |
0 T f . —
5000 000 9000 11000 13000 15000

Number of blocks

(b) multiple disks

Figure 5.8: Estimation with existing schemes

98

(CXNLT YO EA-D

ogll sl eel] | roundO
I |1 G| Cl]| C5 | round 1
Joz|| || cal] ¢zl round2
iReliNe: C3|! round 3
Sl L) Mo
TN (TN O oD\
cell of|| cal] | round 4
|l ¢l]| ¢zl round5
(s cs|| co|' round 6
repeated | 1--3r--rpF-ohooz)
cr| ol cl|) round7

Figure 5.9: An example of the 3rd level resolution service

the distribution function of, as a normal distribution with,, = j-vzl fin, and
on = ¥-, 0, whereu, ando;, denote the mean and the variation respectively.
Chang and Zakhor [Chan97] compute the gifz) by convolving f,, (z) for
1 < j < N. When all the blocks are serviced in a single service point (i.e. disk),

both of the two approaches give the exact estimation as shown in Figure 5.8(a).

In a disk array environment where data blocks are serviced across multiple
disks, however, they may not produce the proper estimation. In Figure 5.8(b),
the estimation of two approaches shows a large difference with the result of the
simulation; the approaches should be updated in a disk array environment. Ob-
serve that the disk request pattern for a video stream is repeated periodically with
the period ofd rounds. In Figure 5.9, for example, the first four rounds are re-
peated while the service proceeds. Furthermore, from the view point of each disk,

the components retrieved duridgounds contain each resolution level, although

99

they are not in the same segment, for instance in Figurg{69,C}, C3} in disk

0 and{C;, C?, C3} in disk 1. This indicates that disk blocks férounds are per-

fectly distributed across all the disks duridgounds; the variation of the number

of blocks to be accessed at a disk durihgounds is much smaller than that of

the number of blocks in each round. In addition, the request scheduling evenly
distributes the disk workloads for concurrent clients. Eventually, it is statistically
true thatn,; blocks are evenly distributed acrodddisks in each round. Thus,
given a video stream, we can compute the mean and the variance for the number

of blocks (n'j) to be accessed at a disk in each round as follows:
o = bin;[d, 0 =0y [d. (5.9)

Using the central limit theorem(D;) = Zj-vzl n] approaches a normal distribu-
tion N(u,0%) wherey = IV, pr ando® = ¥ 10 ,. From Eq. (5.7), then,
J

Nupper 1S COMputed by

o) 1 2 2
/ eI dr < e (5.10)

upper ON 2T
Finally, we can admit a new cliedY if n,,,., satisfies Eq. (5.8). The statistics
of the random variable; which denotes the number of blocks to be serviced in a
round for client; can be knowra priori from the traces for the service bf with

k-resolution at the time the video stream is stored as follows:
2

1 -1 k-1 1 -1
DI IS ((Z bs> - m) (5.11)
5s=0 c=0 s=0
Figure 5.10 exhibits that the proposed scheme gives an accurate estimation to
the actual number of blocks required for the service. We compgyg, calcu-
lated from Eq. (5.10) with the value measured from the simulation. As shown

in Figure 5.10, regardless of the number of clients and the number of disks, the

100

-3 300 clients, 8 disks

15% 10 ‘
Estimation
Simulation(Disk 0)
Simulation(Disk 1)
Simulation(Disk 2)
1r Simulation(Disk 3)| 1
> Simulation(Disk 4)
= Simulation(Disk 5)
% Simulation(Disk 6)
.8 Simulation(Disk 7)
a
0.51 J
0 7 L L
8000 9000 10000 11000 12000
Number of blocks
4 8 disks (€=0.001)
35X 10 ‘ ‘ _
3r : Simulaiton]
Approximation
2.5r b
5 2 1
g
::!
1.5¢ b
1 L 4
0.5f b
0 . . .
300 500 1000
Number of clients
¥ 10° 300 clients (€=0.001)
2.5 T T T
L S | i 4
2 : A;?;)lrjoilitls‘lgtion
15/ 1
[
g
=]
c
1 L 4
0.5¢ |
0 y - -
4 8 16

Number of disks

Figure 5.10: Estimation with the proposed scheme

101

x 10 8 disks (‘s:0.001)

- Request scheduling
No scheduling

300 500 1000
Number of clients

4 300 clients (€=0.001)
25 |

- Request scheduling |
No scheduling

0.5

4 8 16
Number of disks

Figure 5.11: Effect of the request scheduling

102

admission control strategy precisely estimate the actual number of blocks to be
accessed at a disk. This indicates that the server resources such as disk band-
width and buffer memory can be fully utilized. In Figure 5.11, the effect of the
request scheduling is presented. By redueipg,.,, the request scheduling en-
ables the server to efficiently provide services for more clients. We can also find
from Figure 5.11 that the effect of the request scheduling becomes larger as the
number of disks increases, since the disk load balancing is more significant on
a large number of disks. In the experiment, the request scheduling reduces the
required bandwidth by about 9.8 Mbps per disk, but the average service latency
increases by 2.16 seconds. We believe that it is worthwhile to increase the number

of concurrent clients at the expense of acceptable service latency.

5.5 Implementation of amulti-resolution video man-

ager: MRVman

In this section, we implement a multi-resolution video manager, or MR\Ztan
realize the proposed techniques in Chapter 5. For the quick implementation, we
update DAman described in Chapter 3 to provide multi-resolution video services.
Since DAman consists of several functional managers, it is easy to add or update
each function. MRVman is implemented by updating the file system manager and

the striping manager of DAman.

SSource codes for MRVman can be accesseltatp: / / csel ab. snu. ac. kr/ ~cj s/
resear ch/ MRVman. ht m .

103

MRVman
i User request

File System Manager
MRVopen MRVclose MRVread MRVwrite
MRVseek MRVrm MRVfsck MRVmkfs Interrupt
MRVIs MRVmv ~ MRVfree MRVibsize M
MRVmalloc MRVrequest anager MRVman library
«—
l StripRequest() Stub
B S e .
Striping Manager Applicaiton
MRYV striping > Igfogram
l SCSIRequest() Interrupt
SCSI Manager Handler
Management of SCSI adapters and disks

AHAcommand()

\
!
QNX redl-time microkernel OS /

\ 4

H/W (SCSI adapters and disks)

Figure 5.12: Overall architecture of MRVman

55.1 Overall architecture

First of all, we employ MPEG-1 streams with hardware decoder for multi-resolution
video streams. As mentioned in Section 5.1.1, MPEG-1 video streams are recon-
structed into the multi-resolution video model in temporal dimension. In the first
prototype of the server, the resolution level is provided with high, medium, or
low. MPEG-1 video streams are parsed and separated by the frame type, and
then, a segment is made up of a GOP. A set of the same type frames in the
GOP constructs each component in a segment, for exafiple(Py, P», Ps, Py),

(B, B, B3, By, Bs, Bg, B, Bg, By, Byy).

Figure 5.12 depicts the overall architecture of MRVman which is similar to

that of DAman. The major differences between DAman and MRVman are file

104

Disk 0 Disk 1 Disk 2 Disk 3

1st GOP ‘ | ‘ ‘ PPPP ‘ ‘ BBBBBBBBBB ‘

2nd GOP ‘ | ‘ ‘ PPPP ‘ ‘ BBBBBBBBBB

e
4th GOP ‘ PPPP ‘ ‘ BBBBBBBBBB ‘ |:|

5th GOP | ‘ ‘ PPPP ‘ ‘ BBBBBBBBBB ‘

Figure 5.13: Data placement in MRVman

systems and striping policy. System calls are updated for multi-resolution video
services as shown in Figure 5.12 and the striping manager places video streams
according to the multi-resolution video data placement scheme proposed in Sec-

tion 5.2. Further description proceeds in the next subsection.

5.5.2 Multi-resolution video file system

We begin by introducing data placement of a video file. As mentioned ear-
lier, MPEG-1 video streams are reconstructed into the multi-resolution video
stream model in temporal dimension and the resolution level is provided with
high, medium, or low £ = 3). Since the prototype has four diské € 4), a
reconstructed MPEG-1 video file is placed on disks according to the placement
scheme in Figure 5.4(c) < d (see Figure 5.13). While placing video files, MRV-
man should maintain some meta information as followings:

struct nmetainfo {

int picturetype;

int size;

105

super bl ock
directory bl ock

met a bl ock

bi t map bl ock

dat a bl ock

Figure 5.14: MRVman file system structure

i nt disk;

i nt sector _nunber;

int sector _count; H
The striping manager of MRVman maintains such meta information. MRVman
has a similar file system structure to DAman as shown in Figure 5.14. Each block
has the same function with that of DAman in Section 3.4 except that the meta

block contains meta information described above.

Similarly to DAman, MRVman supports 16 run-time libraries in Figure 5.15
and 7 file system utilities in Table 5.3. In what follows, we briefly describe storage

and retrieval of multi-resolution video streams in MRVman.

e Storage: The multi-resolution video file system parses MPEG-1 video files
and distributes them by the picture type as shown in Figure 5.13. Hence,
storage of multi-resolution video files on MRVman can be accomplished
only by cp2nmr v command in Table 5.3. Thep2nr v command parses
MPEG-1 video files [ISOa] and store each picture on disks in compliance
with the proposed multi-resolution video data placement scheme through
nTv_wr it e function. At the same time, MRVman stores the related meta

information on meta block.

106

i nt nrv_open(char *filename, int flag);

i nt nrv_cl ose(int handl e);

i nt nrv_read(int handl e, char _far *buf, int nmax.size,
int resolutionlevel);

i nt mvwite(int handle, char _far *buf, int size,
int picturetype);

i nt nrv_request (int n, ReqgBl k.t *reqg-blk);

i nt nrv_rew nd(i nt handle);

i nt nrv_nkfs(int |ogical bl ocksize);

i nt nrv_fsck(void);

i nt nrv_l bsi ze(voi d);

i nt mv.Ils(DirEntt *dir, char *nane);

i nt nrv_rm(char *fil e_.nane);

i nt nrv_nv(char *source, char *dest);

char _far * nmrv_malloc(int size);

i nt nrv_free(char _far *pointer);

char * far2near(char _far *pointer, int size);

i nt nrv_errmsg(void);

Figure 5.15: Run-time libraries for MRVman

e Retrieval: Application programs such aspnr v2 and video servers re-
trieve multi-resolution video data only byr v r ead function in Figure
5.15. MRVman retrieves the given resolution of video data up to amount of
buffer size. The retrieval unit is the picture. In other words, for example,
when the given buffer size accommodates 10 pictures and some part of a
picture, only 10 pictures are retrieved concurrently across disks in the array.
In the retrieval, the picture sequence is reorganized into the original, so that

the existing MPEG hardware/software decoder can work.

On the other hand, MRVman has the following features: First, it supports
multi-resolution video services by reconstructing MPEG-1 video files without any
special decoder. Second, it supports interactive operations without any additional

cost such as disk and network bandwidth. Third, the multi-resolution video stream

107

Table 5.3: Utilities for MRVman

Command Description
cp2nrv copy a file to MRVman
cpnrv2 copy a file from MRVman
nmknrvfs | make a MRVman file system

nrvls list directory entries
nrvrm remove a file
nT vnv move (rename) a file

nrvfsck | check MRVman file system

model allows to use only the necessary portion of data; MRVman effectively man-
ages the server resources. Finally, by the multi-resolution video data placement
scheme it can achieve load balancing among disks and thus effectively manage

the aggregate disk bandwidth.

5.5.3 Multi-resolution video on-demand system

In order to verify the multi-resolution video playback of MRVman, we develop

a small-scale prototype of multi-resolution video-on-demand system which con-
sists of a server and a client. Client and server are connected through Ethernet
and TCP/UDP protocols are used. On top of MRVman, a VOD server is imple-
mented and client programs run on Windows 95 with RealMagic hardware MPEG
decodef. With the help of MRVman, the client program can be implemented with
existing libraries supported by RealMagic MPEG decéadrile providing high,

medium, and low resolution video services. Figure 5.16 shows the window of

6Sigma Designs Inc.
"The libraries can be accessedhat p: / / ww. si gmadesi gns. com

108

v Medium
Loy

(R]« mw]un|we]|

Figure 5.16: Client window in the prototype

client program in the prototype. The prototype exhibits that the visual quality of
the multi-resolution playback and fastforward playback is acceptable. This gives
us more insights into the proposed techniques when extended to a practical envi-

ronment.

5.5.4 Empirical evaluation

This subsection measures the execution time of MRVman with a timer board
which has 0.4s granularity and analyzes the results. Meanwhile, we employ
a MPEG-1 video filavi ssi on. npg which is compressed by MPEG-1 encdter

using the part of a movie title ‘Mission Impossible’ about 20 minutes.

80ptiVision Inc.

109

Table 5.4: Execution time of MRVmann$)

Functional manager Execution time (read)
Request to MRVman 94.0
File system manager 389.1
Striping manager 4839.2
SCSI manager 320.7
Interrupt manager 16918.4

First of all, the analysis afi ssi on. npg indicates that (1) a GOP consists
of 1 I picture, 4P pictures, and 1@ pictures and (2) the average sized pf°,
and B pictures are 16657B, 8183B, and 4399B, respectively (3.79:1.86:1). So,
the playback rates of high, medium, and low resolution are 1.5Mbps, 0.8Mbps,
and 0.18Mbps. On the other hand, the ratid pP?, B picture sizes shows great
differences along the type of video streams [Rose95]. Hence, according to the
stream type and encoding parameters in MPEGVYl1afd M) [ISOa], various

resolution levels can be provided.

Next, Table 5.4 shows the execution time of each functional manager of MRV-
man. The values are the elapsed times for retrieving one segment or a GOP (15
pictures) withnr v_r ead function. As shown in Table 5.4, the relatively large
portion of time is spent in the striping manager and the interrupt manager. This is
because the striping manager should read meta information from meta block and
the interrupt manager should copy data into user address space. For identifying
data copying overhead, we compare the elapsed tinme wfr ead with that of
nTv_wr it e which exploits DMA mechanism. The execution time of interrupt
manager is 1672sinnr v_wri t e; so, the data copying overhead would be 90%

of the execution time of interrupt manager.

110

Table 5.5: Effect on storage overhead and retrieval time of logical block size

Logical block size|| Storage overheadRetrieval time
0.5KB 3.8% | 116504.2us

1KB 9.3% 94869.7us

2 KB 19.2%| 104482.4us

4 KB 33.9%| 120853.0us

Table 5.6: Effect of the number of disks

Number of disks| Retrieval time
1 118159.0us
2 109420.7us
3 94574.9us
4 94869.7.s

As described in Subsection 5.5.2, MRVman stores video streams by the pic-
ture. The storage unit is the logical block of which the size is usuall$ KB
in most operating systems. In general, the size of logical block affects the stor-
age efficiency and the read performance of disks. When the logical block size
becomes larger, it is expected that the read operation performs better but the stor-
age efficiency becomes worse. The effect on the storage efficiency and the read
performance of logical block size is given in Table 5.5. Table 5.5 indicates that
the logical block of 1KB reveals the best performance in the retrieval time. In ad-
dition, when the logical block size is greater than 1KB, the large storage overhead
results in the large retrieval time. We can conclude that the most appropriate value

of logical block size in MRVman is 1KB.

Table 5.6 presents the effect of the number of disks. Since the resolution level

of a video stream is three (high, medium, and low), striping on 3 and 4 disks

111

Table 5.7: Effect of video resolution

Resolution| Retrieval time
High 94869.7us
Medium 50308.7us
Low 25307.7us

Table 5.8: Effect of multiple streams

Number of streams Retrieval time
1 94869.7.s
2 163205.3us
3 244365.6us
4 326490.1us
5 396571.3us

show the similar performance. However, striping on 4 disks has an idle disk in
each round; it can service more clients. When the number of disks is 1 or 2, the

retrieval time increases because multiple disk requests may arrive at a disk.

So far we experimented with high resolution video service. Since lower reso-
lution service needs smaller amount of data, it is expected that the retrieval time
decreases. Table 5.7 presents the result. Hence, it is verified that MRVman can

service more clients by degrading the resolution levels of existing clients.

We described the retrieval time of a single video stream until now. MRVman
supports multiple read/write operations byv r equest . Table 5.8 presents
the retrieval time of multiple streams throughv r equest function. It results
from disk load balancing that the retrieval time does not show linear increase on

the number of disks. In other words, while there is an idle disk on the service of

112

Table 5.9: Number of disk blocks retrieved in each disk (1000)

Resolution|| Disk O | Disk 1 | Disk 2 | Disk 3
High 25247 | 25280| 25248 | 25254
Medium || 12954| 12955| 12938| 12931
Low 2620| 2563| 2545| 2598

one stream, the service of multiple streams activates all the disks in the array.

Finally, Table 5.9 validates once more the disk load balancing property of
MRVman although it is validated through simulation in Subsection 5.4.1.

113

Chapter 6

Conclusions

In this thesis we have addressed the problems of designing video servers in vari-
ous environments by providing efficient storage and retrieval of video data. The

followings summarize the main results obtained from the thesis:

e A simple performance analysis of disk arrays through simulation studies
for a single server architecture recommended that (1) the number of disks
should be less than four, (2) SCAN is a competitive disk scheduling algo-
rithm, (3) the striping policy should be AID5, (4R tracks are appropriate
for the striping unit size, and (5) each video stream should be placed con-

tiguously.

e Implementation of a disk array manager (DAman) validated the above re-
sults. Although the absolute values in the graphs obtained from simulation
studies and performance measure of DAman are different from each other,

the shapes of the graphise(the tendency to the effects of parameters on

114

performance) are similar.

On top of DAman, a video server has been developed. By integrating the
server with a VOD system, we figured out the behavior of video servers and

obtained some feedbacks.

For a large-scale server, storage and retrieval in a parallel server have been
proposed including data placement, retrieval scheduling, and communica-
tion scheduling. By the proposed scheduling algorithms, disk bandwidth in

a parallel server can be fully utilized and communication between nodes in

a parallel server is guaranteed conflict-free.

Given a large number of nodes, the configuration of a large-scale server has
been described. In other words, we addressed how to cluster such nodes
into server clusters (parallel servers). The analysis indicated that clients ex-
perience relatively large service latency when the number of server clusters
is small, that is, the size of a server cluster is large. On the other hand,
when the number of server clusters is large, client requests are not balanced
among server clusterse. there exist hot spots although popular videos are
replicated. The tradeoff of large versus small clusters provides a basis for

the design of the most effective server configuration.

A queueing analysis for the large-scale video server has been conducted
with a server cluster being an independent service entity. An open queueing
network model has been developed which consists of M/M/1 queues and
Poisson input processes. From the model, we derived the packet loss proba-

bility that a packet request is not serviced within its deadline. The queueing

115

analysis revealed, as can be expected, that the parameters which greatly af-
fect the performance of large-scale video servers are the disk bandwidth and
the access network bandwidth. The proper combination of them should be

derived.

The benefits of employing multi-resolution video have been identified: het-
erogeneous client support, storage efficiency, adaptive service, and interac-

tive operations support.

For the purpose of modeling multi-resolution video, we proposedexel
multi-resolution video stream model. In the model, each video stream can
be provided withz levels of quality and the QoS parameter is represented
by the number of components in a segment. We also described how to build
the proposed multi-resolution video stream model using the current scal-
able video compression techniques including DCT-based scheme, subband

schemes, fractal-based schemes, and object-based schemes.

We addressed the issues on storage and retrieval of multi-resolution video.
The placement scheme exploits both concurrency and parallelism offered by
striping data across disks and achieves the disk load balancing during any
resolution video service. The deterministic access property of the place-
ment scheme also permits the retrieval scheduling to be performed on each
disk independently and to support interactive operations simply by recon-

structing the input parameters of the scheduler. In addition, we developed
an efficient admission control algorithm which precisely estimates the ac-

tual disk workload for the given resolution services. The proposed schemes
have been validated through simulation studies with trace data generated

from actual scalable video streams.

116

e Based on storage and retrieval schemes of multi-resolution video, a multi-
resolution video manager (MRVman) has been developed. A prototype of
the multi-resolution VOD system exhibited that the visual quality of multi-

resolution playback and fastforward playback is acceptable.

Throughout this thesis, we have assumed that disk storage and retrieval of
video data are the major bottleneck on the performance of video servers. Another
system resource, or buffer memory should be effectively managed and the hier-
archical storage management of memory, disk, and tape storage should be also
treated carefully. The effective management of them remains to be solved in the

future.

117

Appendix A

Proof of Theorem 5.1

Proof: i) z = d: Without loss of generality, we assume tit&trtDisky = 0.
Then, forV = {C: |0 < s <[, 0 < ¢ < z}, Vig is given from Eq. (5.1) and

(5.2) as follows:
Vie ={Cl10<s<l,0<c<k, c=1]i— s} (A.1)
Therefore|V;, x| is the number of’s, 0 < s < [, which satisfies
i—slu < k. (A.2)
Lets=xz-d+y,(0<z< [f—iJ 0 <y < d)andapply itto Eq. (A.2).
i—x-d—ylg<k (A.3)
l

If] = m-d, foreachz, 0 < z < [3

satisfies Eq. (A.3) i&. If | # m - d, for eachr, 0 < z < | 1|, the number off's is

J, the number ofy’s, 0 < y < d, which

k and forx = HJ the number of/sis«, 0 < a < d. Hence |V, ;| = HJ X k+o

118

(0 <a<d).

i) z < d: This is equivalent to the case where= d andk < z. From the result

of case i),|Vix| = &J Xk+a(0<a<d).
i) z > d: From Eq. (5.1) and (5.2),
Vip = {C5|0<s<l,0<c<k c=[i—slata-d 0<a< m}. (A.4)

If & < d, this case is equivalent to case i) because each disk retrieves one compo-
nentin a segment. K > d, each disk retrieves one or more components in a seg-
ment. From Eq. (A.4),- |%| component$Cs [0 < s <1, ¢ = [i—slg+a-d,0 <

a < {SJ} are retrieved and additional componefts |0 < s <, c=[i—s|s+

[§J -d < k} are also retrieved. According to the result of case i), the number of the
additional components i} | x (k— | £|-d)+a’ (0 < o < d). By integrating two
terms, we can obtain the total number of compone[rﬂ;,x k4+a(0<a<d).

O

119

Bibliography

[Abra98]

[Agne96]

[AhN95]

[Alle90]

[Ande92]

E. L. Abram-Profeta and K. G. Shin, “Providing unrestricted VCR
functions in multicast video-on-demand servers,” Piroc. of Inter-
national Conference on Multimedia Computing and Systerages
66—75, 1998.

P. W. Agnew and A. S. KellermarDistributed Multimedia: Tech-
nologies, Applications, and Opportunities in the Digital Information

Industry, Addison-Wesley Publishing Company, 1996.

S. Ahn, Y. Lee, J. Cho, T. Kim, and H. Shin, “Design and implemen-
tation of a real-time storage server for digital audio/video using disk

array technology,Journal of KISS(C)1(1):35-45, 1995.

A. O. Allen, Probability, Statistics, and Queueing Theory with Com-
puter Science Application2nd Ed., Academic Press, Inc., 1990.

D. P. Anderson, Y. Osawa, and R. Govindan, “A file system for con-
tinuous media,ACM Transactions on Computer Systeft¥4):311—
337,1992.

120

[AndI96]

[Beck98]

[Bern93]

[Bers94]

[Bers95]

[Bogd94]

[Bolo96]

[Bufo94]

P. K. Andleigh and K. Thakratultimedia Systems DesigRrentice
Hall, 1996.

C. J. Beckmann, A. A. Moin, and S. Nog, “Bandwidth reservation
with selectable bit-rate stream$Jfultimedia System$(4):219-231,
1998.

P. J. Bernhard, “Bounds on the performance of message routing
heuristics,” IEEE Transactions on Computerd2(10):1253-1256,
1993.

S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, “Staggered
striping in multimedia information systems,” FProc. of ACM SIG-
MOD '94, 1994.

S. Berson, S. Ghandeharizadeh, R. Muntz, and X. Ju, “Staggered
striping: A flexible technique to display continuous medidjulti-
media Tools and Application4(2):127-148, 1995.

A. Bogdan, “Multiscale (intrer/intra-frame) fractal video coding,” In

Proc. of IEEE International Conference on Image Processiré94.

W. J. Bolosky and et. al, “The Tiger video fileserver,” Pnoc. of
International Workshop on Network and Operating System Support

for Digital Audio and Videppages 97-104, 1996.

J. F. K. Buford, Multimedia SystemsAddison-Wesley Publishing
Company, 1994.

121

[Cata95]

[Chan94]

V. Catania, A. Puliafito, S. Riccobene, and L. Vita, “Design and
performance analysis of a disk array systefEEE Transactions on
Computers44(10):1236-1247, 1995.

E. Chang and A. Zakhor, “Scalable video data placement on paral-
lel disk arrays,” InProc. of IS&T/SPIE International Symposium on

Electronic Imaging: Science and Technolpggges 208—-221, 1994.

[Chan96a] E. Chang and A. Zakhor, “Cost analyses for VBR video servers,”

IEEE Multimedia Magazine4(3):56—71, 1996.

[Chan96b] E. ChangStorageand Retrieval of Compressed VidehD thesis,

[Chan97]

[Chen93]

[Chen94]

[Chen95]

University of California at Berkeley, 1996.

E. Chang and A. Zakhor, “Disk-based storage for scalable video,”
IEEE Transactions on Circuits and Systems for Video Technplogy
7(5):758-770, 1997.

M.-S. Chen, D. D. Kandlur, and P. S. Yu, “Optimization of the
grouped sweeping scheduling (GSS) with heterogeneous multimedia
streams,” InProc. of ACM Multimedia '93pages 235-242, 1993.

M.-S. Chen, D. D. Kandlur, and P. S. Yu, “Support for fully inter-
active playout in a disk-array-based video server,”Phoc. of ACM

Multimedia '94 pages 391-398, 1994.

M.-S. Chen, D. D. Kandlur, and P. S. Yu, *“Using rate staggering
to store scalable video data in a disk-array-based video server,” In
Proc. of IS&T/SPIE Symposium on Electronic Imaging Conference

on Multimedia Computing and Networkingages 338—-345, 1995.

122

[Chen96]

[Cher95]

[Chia94]

[Chiu93]

[Cho94]

[Cho95]

[Cho96]

[Cho97a]

M.-S. Chen and D. D. Kandlur, “Stream conversion to support in-
teractive video playout,”IEEE Multimedia Magazine3(2):51-58,
1996.

A. L. Chervenak, D. A. Patterson, and R. H. Katz, “Choosing the best
storage system for video service,” Rroc. of ACM Multimedia '95
pages 109-119, 1995.

T. Chiang and D. Anastassiou, “Hierarchical coding of digital televi-

sion,” IEEE Communications Magazing&2(5):38-45, 1994.

T.-C. Chiueh and R. H. Katz, “Multi-resolution video representation
for parallel disk arrays,” IrProc. of ACM Multimedia ‘93 pages
401-409, 1993.

J. Cho and H. Shin, “A scheduling method for real-time multime-
dia storage server using disk arrayggurnal of KIS$21(11):1981—
1989, 1994.

J. Cho, T. Kim, Y. Kim, M. Sung, and H. Shin, “Performance analysis
of disk arrays for storage architecture of multimedia server$rtit.

of the 22nd KISS Fall Conferengeages 823-826, 1995.

J. Cho, T. Kim, Y. Kim, M. Sung, and H. Shin, “A disk array manager
on microkernel environment for video servers,” Proc. of the 23rd

KISS Spring Conferencpages 335-338, 1996.

J. Cho and H. Shin, “Scheduling algorithms in a large-scale VOD
server,” InProcs. of the IPPS’97 Workshop on Parallel Processing

and Multimediapages 17-25, 1997.

123

[Cho97b]

[Cho97c]

[Cho97d]

[Cho97e]

[Cho98a]

[Cho98b]

[Cho98c]

[Cho99a]

J. Cho and H. Shin, “Queueing model of a large-scale VOD server,”

In Proc. of the 24th KISS Spring Conferenpages 383—-386, 1997.

J. Cho and H. Shin, “Design issues for multimedia information
servers in mobile computing environment,” Rroc. of the 4th In-
ternational Workshop on Mobile Multimedia Communicatiqresges
336-339, 1997.

J. Cho and H. Shin, “Heuristic scheduling for multimedia streams
with firm deadlines,” InProcs. of the 4th International Workshop on

Real-Time Computing Systems and Applicatipages 67—72, 1997.

J. Cho and H. Shin, “Scheduling video streams in a large-scale video-
on-demand serverpParallel Computing23(12):1743-1755, 1997.

J. Cho and H. Shin, “Performance analysis of a large-scale video-on-
demand server using queueing moddigurnal of KICS 23(1):155—-
161, 1998.

J. Cho and H. Shin, “MRVman: A multi-resolution video manager for
MPEG-1 streams,” IProc. of KISS SIGCS Fall Conferengeages
237-245, 1998.

J. Cho and H. Shin, “Temporal multi-resolution video playback based
on reconstructing MPEG-1 streamslpurnal of KISS(C)4(4):439—
448, 1998.

J. Cho and H. Shin, “A multi-resolution video scheme for multime-

dia information servers in mobile computing environment, Phoc.

124

[Cho99b]

[Chung6]

[Coul94]

[Dan95]

[Dan97]

[Delg94]

[Dey94]

of International Conference on Telecommunicatipages 388-392,

1999.

J. Cho and H. Shin, “A design framework for multi-resolution video

servers,”submitted for publication1999.

S. M. Chung, Multimedia Information Stage andManagement

Kluwer Academic Publishers, 1996.

G. Coulson, G. S. Blair, P. Robin, and D. Shepherd, “Supporting con-
tinuous media applications in a micro-kernel environment,” Technical
report, Lancaster University Computing Dept., Internal Report Num-

ber MPG-94-16, 1994.

A. Dan, D. Dias, R. Mukherjee, D. Sitaram, and R. Tewari, “Buffer-
ing and caching in large-scale video servers,Phoc. of IEEE Com-
pCon 95 pages 217-224, 1995.

A. Dan, E. Eshel, J. Hollan, R. Kenneson, M. Kienzle, J. McAssey,
R. Rose, D. Sitaram, and W. Tetzlaff, “The research server complex
manager for large-scale multimedia servers,” Technical report, IBM

Research, No. RC20705, 1997.

L. Delgrossi, C. Halstrick, D. Hehmann, R. G. Herrtwich, O. Krone,
J. Sandvoss, and C. Vogt, “Media scaling in a multimedia communi-

cation system,Multimedia System®(4):172-180, 1994.

J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and D. Towsley, “Provid-
ing VCR capabilities in large-scale video servers,”Aroc. of ACM

Multimedia '94 pages 25-32, 1994.

125

[Doga93]

[Free95]

[Gall9l]

Y. N. Doganata and A. N. Tantawi, “A video server cost/performance
estimator tool,” Multimedia Tools and Applicationd.(2):127-148,
1993.

C. S. Freedman and D. J. DeWitt, “The SPIFFI scalable video-on-
demand system,” IiProc. of 1995 ACM SIGMODpages 352-363,
1995.

D. L. Gall, “MPEG: A video compression standard for multimedia

applications,”"Communications of ACMB4(4):46-58, 1991.

[Gemm92] D. J. Gemmell and S. Christodoulakis, “Principles of delay-sensitive

multimedia data storage and retrievaRCM Transactions on Infor-
mation Systemd4.0(1):51-90, 1992.

[Gemm95] D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, and L. A.

[Ghan93]

[Ghan94]

[Gros97]

Rowe, “Multimedia storage servers: A tutorial [EEE Computer
Magazing 28(5):40-49, 1995.

S. Ghanderharizadeh and L. Ramos, “Continuous retrieval of multi-
media data using parallelismEEE Transactions on Knowledge and

Data Engineering5(4):658-669, 1993.

S. Ghandeharizadeh and C. Shahabi, “On multimedia repositories,
personal computers, and hierarchical storage systemsPrda. of
ACM Multimedia '94 pages 407-416, 1994.

W. I. Grosky, R. Jain, and R. Mehrotiiedhe Handbook of Multimedia

Information ManagemenPrentice Hall, 1997.

126

[Han95]

[Hamd95]

[Harr93]

[Hask93]

[Heyb96]

[Hunt]

[Huyn94]

[Hwan93]

C.-C. Han and K. G. Shin, “Scheduling MPEG-compressed video
streams with firm deadline constraints,”Pnoc. of ACM Multimedia
'95, pages 411-422, 1995.

M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams withm, k)-firm deadlines,” IEEE Transac-
tions on Computerst4(12):1443-1451, 1995.

P. G. Harrison and N. M. PatdPerformance Modeling of Communi-
cation Networks and Computer Architecturédsddison-Wesley Pub-

lishing Company, 1993.

R. L. Haskin, “The Shark continuous-media file server,Ptac. of
Spring COMPCON '93pages 12-15, 1993.

A. Heybey, M. Sullivan, and P. England, “Calliope: A distributed,
scalable multimedia server,” Iaroc. of USENIX 1996 Annual Tech-

nical Conferencegl996.

J. Hunter, V. Witana, and M. Antoniades, “A review of video
streaming over the internet,” White papentt p:// www.
dst c. edu. au/ RDU/ st af f/ j ane- hunt er/ vi deo-

stream ng. htm.

K. D. Huynh and T. M. Khoshgoftaar, “Performance analysis of ad-
vanced I/O architecture for PC-based video servédsiltimedia Sys-
tems 2(1):36-50, 1994.

K. Hwang,Advanced Computer Architecture: Parallelism, Scalabil-

ity, Programmability McGraw-Hill, Inc., 1993.

127

[1SOa]

[ISOb]

[Kand93]

[Kane96]

[Keet93]

[Kim97a]

[Kim97Db]

ISO/IEC 11172Information Technology - Coding of Moving Pictures
and Associated Audio for Digital Stage Media at Up to about 1.5
Mbits/s

ISO/IEC 13818|nformation Technology - Generic Coding of Moving

Pictures and Associated Audio

D. D. Kandlur, M.-S. Chen, and Z.-Y. Shae, “Design and a multime-
dia storage server,” IBM Research Report, RC 18158, 1993.

H. Kaneko and J. A. Stankovic, “Integrating scheduling of multime-
dia and hard real-time tasks,” Froc. of the 17th Real-Time Systems

Symposiunpages 206-217, 1996.

K. Keeton and R. H. Katz, “The evaluation of video layout strategies
on a high-bandwidth file server,” IRroc. of International Work-
shop on Network and Operating System Support for Digital Audio
and Videg pages 237-248, 1993.

T. Kim, J. Cho, M. Sung, S. Jung, K. Kim, and H. Shin, “Design and
implementation of a scalable multi-purpose multimedia-on-demand
system,” InProc. of the 24nd KISS Fall Conferengemges 519-522,
1997.

J.-W. Kim, Y.-U. Lho, and K.-D. Chung, “An efficient video block
placement scheme on VOD server based on multi-zone recording
disks,” In Proc. of International Conference on Multimedia Com-

puting and Systempages 29-36, 1997.

128

[Klei75]

[Kwon97]

[Lau97]

[Laur94]

[Lawr75]

[Laza94]

[Lee97]

[Lee98]

L. Kleinrock, Queueing Systemsolume I, John Wiley & Sons, Inc.,
1975.

T.-G. Kwon, Y. Choi, and S. Lee, “Disk placement for arbitrary-
rate playback in an interactive video serveilultimedia Systems
5(4):271-281, 1997.

S.-W. Lau and J. C. S. Lui, “Scheduling and data layout policies for
a near-line multimedia storage architectureyiultimedia Systems
5(5):310-323, 1997.

A. Laursen, J. OIlkin, and M. Porter, “Oracle media server: Providing
consumer based interactive access to multimedia dataPradn. of
ACM SIGMOD 94pages 194-201, 1994.

D. H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Transactions on Computei34(12):1145-1155, 1975.

M. S. Lazar and L. T. Bruton, “Fractal block coding of digital video,”
IEEE Transactions on Circuits and Systems for Video Technplogy
4(3):297-308, 1994.

H.-J. Lee and D. H. C. Du, “The effect of disk scheduling scheme on
a video server for supproting quality MPEG video accessed}rde.

of International Conference on Multimedia Computing and Systems
pages 194-201, 1997.

J. Y. B. Lee, “Parallel video server: A tutoriallEEE Multimedia
Magazing 5(2):20-28, 1998.

129

[Lian97]

[Litt93]

[Loug92]

[Loug93]

[Mac87]

[Maka97]

[Mc96]

[Mour96]

J. Liang, “Highly scalable image coding for multimedia applica-

tions,” In Proc. of ACM Multimedia '97pages 11-19, 1997.

T. D. C. Little and D. Venkatesh, “Probabilistic assignment of movies
to storage devices in a video-on-demand system,"Proc. of the
International Workshop on Network and Operating System Support

for Digital Audio and Videppages 213-224, 1993.

P. Lougher and D. Shepherd, “The design and implementation of a
continuous media storage server,” Pmoc. of International Work-
shop on Network and Operating System Support for Digital Audio
and Videg pages 63-74, 1992.

P. K. LougherThe Design of a Stage Server for Continuous Media

PhD thesis, Department of Computing, Lancaster University, 1993.

M. H. MacDougall, Simulating Computer Systems: Techniques and
Tools MIT Press, 1987.

D. Makaroff, G. Neufeld, and N. Hutchinson, “An evaluation of VBR
disk admission algorithms for continuous media file serversZrrc.

of ACM Multimedia '97 pages 143-154, 1997.

S. R. McCanneScalable Compression and Transmission of Internet
Multicast Videg PhD thesis, University of California at Berkeley,
1996.

A. N. Mourad, “Issues in the design of a storage server for video-on-
demand,’Multimedia System#(2):70-86, 1996.

130

[Mok96]

[Neufo6]

[Ng96]

[0zde95]

[0zde96]

[Paek95]

[Paek96]

A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” In

Proc. of the 17th Real-Time Systems Sympagsiages 22—-29, 1996.

G. Neufeld, D. Makaroff, and N. Hutchinson, “Design of a variable
bit rate continuous media file server for an ATM network,HAroc. of
IS&T/SPIE Multimedia Computing and Networkjmmages 370-380,
1996.

R. T. Ng and J. Yang, “An analysis of buffer sharing and prefetching
techniques for multimedia systemsiultimedia Systems4(2):55—

69, 1996.

B. Ozden, R. Rastogi, and A. Silberschatz, “Research issues in mul-

timedia storage servers&CM Computing Survey3995.

B. Ozden, R. Rastogi, and A. Silberschatz, “Buffer replacement al-
gorithms for multimedia storage systems,” Rroc. of International
Conference on Multimedia Computing and Systgmges 172-180,
1996.

S. Paek, P. Bocheck, and S. F. Chang, “Scalable MPEG2 video
servers with heterogeneous QoS on parallel disk arraysProe. of
International Workshop on Network and Operating Systems Support
for Digital Audio and Videppages 363—-374, 1995.

S. Paek and S.-F. Chang, “Video server retrieval scheduling for vari-
able bit rate scalable video,” Proc. of Internaltional Conference on

Multimedia Computing and Systeppages 108-112, 1996.

131

[Pan98]

[Patt88]

[Pete85]

[QNX93]

H. Pan, L. H. Ngoh, and A. A. Lazar, “A buffer-inventory-based
dynamic scheduling algorithm for multimedia-on-demand servers,”

Multimedia System$(2):125-136, 1998.

D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” IRroc. of ACM SIGMOD
pages 109-116, 1988.

J. L. Peterson and A. Silberschdperating System Conceptand
Ed., Addison-Wesley Publishing Company, 1985.

“QNX System architecture QNX Operating Systems Manu&NX
Software Systems Ltd., 1993.

[Rang91a] P.V. Rangan and H. M. Vin, “Designing file systems for digital video

and audio,” InProc. of ACM Symposium on Operating Systems Prin-

ciples pages 69-79, 1991.

[Rang91b] P. V. Rangan, W. A. Burkhard, W. Bowdidge, and et. al, “A testbed

[Rang92]

[Rang93]

for managing digital video and audio storage,” Rroc. of USENIX
Summerpages 199-208, 1991.

P. V. Rangan, H. M. Vin, and S. Ramanathan, “Designing an on-
demand multimedia service,” [IEEE Communications Magazine
30(7):56-65, 1992.

P. V. Rangan and H. M. Vin, “Efficient storage techniques for digital
continuous multimedia,JEEE Transactions on Knowledge and Data

Engineering pages 564-573, 1993.

132

[Redd93]

[Redd95]

[Redd97]

[Rosa96]

[Rose95]

[Ruem94]

[Shen95]

[Shen98]

A. L. N. Reddy and J. Wyllie, “Disk scheduling in a multimedia I/O
system,” InProc. of ACM Multimedia '93pages 225-233, 1993.

A. L. N. Reddy, “Scheduling and data distribution in a multiprocessor
video server,” InProc. of International Conference on Multimedia

Computing and Systenages 256—-263, 1995.

A. L. N. Reddy, “Evaluation of caching strategies for an internet
server,” InProc. of International Conference on Multimedia Com-

puting and Systempages 118-125, 1997.

J. M. D. Rosario and G. Fox, “Constant bit rate network transmission
of variable bit rate continuous media in video-on-demand servers,”
Multimedia Tools and Applicationg(3):215-232, 1996.

O. Rose, “Statistical properties of MPEG video traffic and their im-
pact on traffic modeling in ATM systems,” Technical report, Univer-
sity of Wuerzburg, Institute of Computer Science Research, Report
No. 101, 1995.

C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”

IEEE Computer Magazin®7(3):17-28, 1994.

P. J. Shenoy and H. M. Vin, “Efficient support for scan operations
in video servers,” IrProc. of ACM Multimedia '95pages 131-140,
1995.

P. J. Shenoy and H. M. Vin, “Efficient support for interactive op-
erations in multi-resolution video serverdylultimedia Systemsc-

cepted for publication, 1998.

133

[Sriv7] A. Srivastava, A. Kumar, and A. Singru, “Design and analysis of a

video-on-demand server¥ultimedia System$(4):238-254, 1997.

[Tan96] W. Tan, E. Chang, and A. Zakhor, “Real-time software implementa-
tion of scalable video codec,” IRroc. of International Conference

on Image Processingages 17-20, 1996.

[Taub94] D. Taubman and A. Zakhor, “Multirate 3-D subband coding of
video,” IEEE Transactions on Image Processing(5):572-588,
1994.

[Tind93] K. Tindell, A. Burns, and R. Davis, “Fixed priority scheduling of hard
real-time multimedia disk traffic,” IfProc. of Workshop on the Role

of Real-Time in Multimedia/Interactive Computing Systetf93.

[Tewa96a] R. Tewari, R. Mukherjee, D. M. Dias, and H. M. Vin, *“Design
and performance tradeoffs in clustered video servers,Prc. of
the International Conference on Multimedia Computing and Systems

pages 144-150, 1996.

[Tewa96b] R. Tewari, R. King, D. Kandlur, and D. M. Dias, “Placement of mul-
timedia blocks on zoned disks,” Iaroc. of IS&T/SPIE Multimedia
Computing and Networkind.996.

[Toba93] F. A. Tobagi, J. Pang, R. Baird, and M. Gang, “Streaming RAID
- a disk array management system for video files,Phoc. of ACM
Multimedia '93 pages 393—-400, 1993.

134

[Tong98]

[VIN93]

[Vin94]

[VIN95]

[Wang96]

S.-R. Tong and Y.-F. Huang, “Study on disk zoning for video servers,”
In Proc. of International Conference on Multimedia Computing and

Systemspages 8695, 1998.

H. M. Vin and P. V. Rangan, “Designing a multiuser HDTV stor-
age server,” IEEE Journal on Selected Areas in Communicatjons
11(1):153-164, 1993.

H. M. Vin, P. Goyal, A. Goyal, and A. Goyal, “A statistical admission
control algorithm for multimedia servers,” Proc. of ACM Multime-

dia '94, pages 33-40, 1994.

H. M. Vin, S. S. Rao, and P. Goyal, “Optimizing the placement of
multimedia objects on disk arrays,” Rroc. of International Confer-

ence on Multimedia Computing and Systepagjes 158-165, 1995.

J. Z. Wang, K. A. Hua, and H. C. Young, “SEP: A space efficient pi-
plelining technique for managing disk buffers in multimedia servers,”
In Proc. of International Conference on Multimedia Computing and

Systemspages 598-607, 1996.

[Wang97a] Q. Wang and M. Ghanbari, “Scalable coding of very high resolution

video using the virtual zerotreelEEE Transactions on Circuits and

Systems for Video Technolggy5):719-727, 1997.

[Wang97b] Y. Wang, J. C. L. Liu, D. H. C. Du, and J. Hsieh, “Efficient video

file allocation schemes for video-on-demand servicéd(iltimedia

Systems5(5):283-296, 1997.

135

[Wang97c] J. Z. Wang and K. A. Hua, “A bandwidth management technique

[Wu80]

[Wu96]

[Wu97]

[Wu98]

[Yu92]

for hierarchical storage in large-scale multimedia servers,Pric.
of International Conference on Multimedia Computing and Systems
pages 261-268, 1997.

C.L.Wu and T. Y. Feng, “On a class of multistage interconnection
networks,”|IEEE Transactions on Compute29(8):694—-702, 1980.

K.-L. Wu and P. S. Yu, “Consumption-based buffer management for
maximizing system throughput of a multimedia system,” Plroc.

of International Conference on Multimedia Computing and Systems
pages 161-171, 1996.

M.-Y. Wu and W. Shu, “Scheduling for interactive operations in par-
allel video servers,” IrProc. of International Conference on Multi-

media Computing and Systerpages 178-185, 1997.

K.-L. Wu and P. S. Yu, “Increasing multimedia system throughput
with consumption-based buffer managemerultimedia Systems
6(6):421-428, 1998.

P. S. Yu, M.-S. Chen, and D. D. Kandlur, “Design and analysis of a
grouped sweeping scheme for multimedia storage management,” In
Proc. of International Workshop on Network and Operating System

Support for Digital Audio and Videgages 38-49, 1992.

136

