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Abstract. Sensor network deployment and its maintenance are very challeng-
ing due to hostile and unpredictable nature of environments. The field coverage 
of a wireless sensor network (WSN) can be enhanced and consequently net-
work lifetime can be prolonged by optimizing the sensor deployment with a fi-
nite number of sensors. In this paper, we propose an energy-efficient fuzzy op-
timization algorithm (EFOA) for movement assisted self-deployment of sensor 
networks based on three descriptors – energy, concentration and distance to 
neighbors. The movement of each sensor node is assumed relatively limited to 
further reduce energy consumption. The existing next-step move direction for-
mulas are improved to be more realistic. We also propose a network mainte-
nance strategy in the post-deployment phase based on the sensor node impor-
tance level ranking. Simulation results show that our approach not only 
achieves fast and stable deployment but also greatly improves the network cov-
erage and energy efficiency as well as prolongs the lifetime. 
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1   Introduction 

Sensor networks which are composed of tiny and resource constrained computing 
devices, have been widely deployed for monitoring and controlling applications in 
physical environments [1]. Due to the unfamiliar nature of such environments, de-
ployment and maintenance of sensor networks has become a challenging problem and 
has received considerable attention recently.  

Some of the work [2], [3], [4] assume that the environment is sufficiently known 
and under control. However, when the environment is unknown or inhospitable such 
as remote inaccessible areas, disaster fields and toxic urban regions, sensor deploy-
ment cannot be performed manually. To scatter sensors by aircraft is one of the pos-
sible solutions. However, using this scheme, the actual landing position cannot be 
predicted due to the existence of wind and obstacles such as trees and buildings. Con-
sequently, the coverage may not be able to satisfy the application requirements. Some 
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researchers suggest simply deploying large amount of static sensors to increase cov-
erage; however it often ends up harming the performance of the network 
[5].Moreover, in many cases, such as during in-building toxic-leaks detection [6], 
chemical sensors must be placed inside a building from the entrance of the building. 
In such cases, it is necessary to take advantage of mobile sensors, which can move to 
the appropriate places to provide the required coverage. 

To address this issue, a class of work has recently appeared where mobility of sen-
sors is utilized to achieve desired deployment [7], [8], [9], [10], [11], [12]. Typically 
in such works, the sensors detect lack of desired deployment objectives such as cov-
erage holes, estimate new locations, and move to the resulting locations. For example, 
in [9], the authors present the virtual force algorithm (VFA) as a new approach for 
sensor deployment to improve the sensor field coverage after an initial random 
placement of sensor nodes. The cluster head (CH) executes the VFA algorithm to find 
new locations for sensors to enhance the overall coverage. However none of the 
above work can well handle the random movement and unpredictable oscillation in 
deployment. In [13], fuzzy logic theory is applied to handle the uncertainty in sensor 
network deployment problem. Their approach achieve fast and relatively stable de-
ployment and increase the field coverage as well as communication quality. However, 
their fuzzy inference system has only two antecedents, number of neighbors of each 
sensor and average Euclidean distance between sensor node and its neighbors, 
without energy consumption considered at all, which is one of the most critical issues 
in sensor networks. 

In this paper, our contribution relies on the two propose strategies. The first is an 
energy-efficient fuzzy optimization algorithm (EFOA) for movement assisted self- 
deployment of sensor networks. It outperforms [13] in three aspects. The first is that 
we take the energy level of sensor node as one of the antecedents in fuzzy rules; the 
second is that the mobility of sensor nodes is set to be relatively limited, i.e., the 
movement distance is bounded by communication range, so that energy consumption 
can be further reduced; the last is represented by the more realistic next-step moving 
direction equations we derived. The second strategy we propose for network mainte-
nance in the post-deployment phase is based on the derived sensor node importance 
level ranking. 

The rest of the paper is organized as follows. Section 2 briefly introduces the over-
view of fuzzy logic system and preliminaries. In section 3 the Energy-efficient Fuzzy 
Optimization Algorithm (EFOA) is explained in detail for mobile nodes deployment 
design. In section 4 network maintenance strategy is proposed based on sensor node 
importance ranking. Simulation and performance evaluations of this work are pre-
sented in Section 5. We conclude with a summary and discuss future work in Section 
6. 



2   Technical Preliminaries 

2.1   Fuzzy Logic Systems  

The model of fuzzy logic system consists of a fuzzifier, fuzzy rules, fuzzy inference 
engine, and a defuzzifier. We have used the most commonly used fuzzy inference 
technique called Mamdani Method [14] due to its simplicity. 

The process is performed in four steps: 
1) Fuzzification of the input variables energy, concentration and average distance 

to neighbors - taking the crisp inputs from each of these and determining the de-
gree to which these inputs belong to each of the appropriate fuzzy sets.  

2) Rule evaluation - taking and applying the fuzzified inputs to the antecedents of 
the fuzzy rules. It is then applied to the consequent membership function. 

3) Aggregation of the rule outputs - the process of unification of the outputs of all 
rules. 

4) Defuzzification - the input for the defuzzification process is the aggregate output 
fuzzy set moving distance and the output is a single crisp number. 

Information flows through the fuzzy inference diagram as shown in Figure 1. 
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Fig. 1. Fuzzy inference diagram 

2.2   Coverage 

Generally, coverage can be considered as the measure of quality of service of a sensor 
network. In this paper, coverage [10] is defined as the ratio of the union of areas 
covered by each node and the area of the entire Region of Interest (ROI), as shown in 
Eq. (1), and binary sensing model [10] is adopted. Here, the covered area of each 
node is defined as the circular area within its sensing radius. Perfect detection of all 
interesting events in the covered area is assumed.  
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where 
Ai       is the area covered by the ith node;  
N     is the total number of nodes; 
A     stands for the area of the ROI. 

In order to prevent recalculating the overlapped area, the coverage here is calcu-
lated using Monte Carlo method by creating a uniform grid in the ROI [11]. All the 
grid points being located in the sensing area are labeled 1 otherwise 0, depending on 
whether the Euclidean distance between each grid point and the sensor node is longer 
or shorter than sensing radius. Then the coverage can be approximated by the ratio of 
the summation of ones to the total number of the grid points. 

If a node is located well inside the ROI, its complete coverage area will lie within 
the ROI. In this case, the full area of that circle is included in the covered region. If a 
node is located near the boundary of the ROI, then only the part of the ROI covered 
by that node is included in the computation. 

3   Proposed Deployment Approach: EFOA 

3.1   Assumptions and Model 

Let G(V, E) be the graph defined on V with edges uv E iff ∈ uv ≤ R. Here uv is the 
Euclidean distance between nodes u and v, R is the communication range. A sensor 
can detect any event within its sensing range r. Two sensors within R can communi-
cate with each other. Neighbors of a sensor are nodes within its communication range. 
Detection and communication is modeled as a circle on the 2-D sensor field. 

According to the radio energy dissipation model, in order to achieve an acceptable 
Signal-to-Noise Ratio (SNR) in transmitting an l bit message over a distance d, the 
energy expended by the radio is given by [15]: 
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where Eelec is the energy dissipated per bit to run the transmitter or the receiver circuit, 

fsε and mpε are amplifier constants, and d is the distance between the sender and the 

receiver. By equating the two expressions at d=d0, we have mpfsd εε /0 = . Here we 

set electronics energy as Eelec=50nJ/bit, whereas the amplifier constant, is taken as 

fsε =10pJ/bit/m2, mpε = 0.0013pJ/bit/m2, the same as in [15]. 

To receive l bit message, the radio expends: 
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For simplicity, assume an area over which n nodes are uniformly distributed and 
the sink is located in the center of the field, so the distance of any node to the sink or 
its cluster head is 0d≤ . 

3.2   Energy-efficient Fuzzy Optimization Algorithm 

Expert knowledge is represented based on the following three descriptors: 
 Node Energy - energy level available in each node, denoted by the fuzzy variable 

energy, 
 Node Concentration - number of neighbors in the vicinity, denoted by the fuzzy 

variable concentration, 
 Average distance to neighbors - average Euclidean distance between sensor node 

and its neighbors, denoted by the fuzzy variable dn. 

Table 1. Fuzzy rule base (dn=average distance to neighbors, dm=moving distance) 

No. energy concentration dn dm 
1 low low close close 
2 low low moderate vclose 
3 low low far vclose 
4 low med close moderate 
5 low med moderate close 
6 low med far vclose 
7 low high close moderate 
8 low high moderate close 
9 low high far close 
10 med low close moderate 
11 med low moderate close 
12 med low far close 
13 med med close far 
14 med med moderate moderate 
15 med med far close 
16 med high close far 
17 med high moderate moderate 
18 med high far moderate 
19 high low close far 
20 high low moderate moderate 
21 high low far moderate 
22 high med close vfar 
23 high med moderate far 
24 high med far moderate 
25 high high close vfar 
26 high high moderate far 
27 high high far far 

Legend: vclose=very close, vfar=very far, med=medium. 



The linguistic variables used to represent the node energy and node concentration, 
are divided into three levels: low, medium and high, respectively, and there are three 
levels to represent the average distance to neighbors: close, moderate and far, respec-
tively. The outcome to represent the moving distance dm was divided into 5 levels: 
very close, close, moderate, far and very far. The fuzzy rule base includes rules like 
the following: IF the energy is high and the concentration is high and the distance to 
neighbor is close THEN the moving distance of sensor node i is very far. 

Thus we used 33 = 27 rules for the fuzzy rule base. We used triangle membership 
functions to represent the fuzzy sets medium and moderate and trapezoid membership 
functions to represent low, high, close and far fuzzy sets. The developed membership 
functions and their corresponding linguistic states are represented in Table 1 and 
Figures 2 through 5 respectively. 
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Fig. 2. Fuzzy set for fuzzy variable energy 
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Fig. 3. Fuzzy set for fuzzy variable concentration 
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Fig. 4. Fuzzy set for fuzzy variable dn 
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Fig. 5. Fuzzy set for fuzzy variable dm 

For the defuzzification, the Centroid is calculated and estimated over a sample of 
points on the aggregate output membership function, using the following formula: 

( ) ∑∑ ∗= )(/)( xxxCen AA μμ  (4) 

where, μA (x) is the membership function of x in A. The membership function maps 
each element of X to a membership value between 0 and 1. 

The control surface is central in fuzzy logic systems and describes the dynamics of 
the controller and is generally a time-varying nonlinear surface. From Fig. 6 and Fig. 
7 obtained by computation in Matlab Fuzzy Logic Toolbox, we can see that although 



the concentration for a certain sensor is high, the moving distance can be smaller than 
some sensor with higher energy or sensor with fewer neighbors but more crowded. 
With the assistance of control surface, the next-step moving distance can be deter-
mined. 
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The next-step move direction is decided by virtual force. Assume sensor i has k 
neighbors, k=k1+k2, in which k1 neighbors are within threshold distance dth to sensor i, 
while k2 neighbors are farther than dth distance to sensor i. The coordinate of sensor i 
is denoted as Ci = (Xi, Yi), and that of neighbor sensor j is Cj = (Xj, Yj). The next-step 
move direction of sensor i is represented as Eq. (5) and (6), which are the improved 
version of moving direction equation in [13]. It is improved in the sense that thresh-
old distance is set here so that attraction and repulsion forces can be represented in 
the equations. Thus after getting moving distance dm and direction (angle α), sensor i 
clearly knows its next-step moving position. 
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The threshold distance dth here is set to a proper value r3  which is proved as fol-
lows: We attempt to make distance between 2 sensor nodes moderate, i.e., not very 
close and not very far. This kind of stable structure is illustrated in Figure 8. Non-
overlapped sensor coverage style is shown in Figure 8(a), however, an obvious draw-
back here is that a coverage hole exists which is not covered by any sensor. Note that 
an alternative way is to allow overlap, as shown in Figure 8(b) and it ensures that all 
grid points are covered. Therefore, we adopt the second strategy. 
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Fig. 8. Non-overlapped and overlapped sensor coverage cases 

In Fig. 8(b), it is obvious that △S1S2S3 is equilateral triangle. Because the sensing 
radius is r, through some steps of simple geometry calculations, we can easily derive 
the distance between two sensor nodes in the latter case S1S2 =S2S3= 
S1S3=2× r3 /2= r3 . 

4   Proposed Network Maintenance Strategy 

After the first stage deployment, the network maintenance is also necessary to be 
considered due to the uncertain environment. Thus, it is actually the post-deployment 
stage after the fuzzy optimization deployment stage and a certain period of network 
operation. The characteristic of the network in this situation is heterogeneous. The 
proposed network maintenance strategy is based on the sensor node importance level 
ranking. First, we take the importance level calculation of the node n as an example. 
Assume the total number of nodes in the network is N. Let the probability that node i 
can sense grid point j be denoted by Si(Pj), and then the probability C(Pj) that grid 
point j is sensed by the whole network is derived as: 
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If delete node n, then the probability C(Pj) becomes 
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For point j, the detection probability loss due to the deletion of node n becomes 
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Considering the importance difference of each node in the network, the detection 
ability loss of the whole network after deleting node n is: 
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j
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in which )( jP∇  is the temporal gradient of sensing value at grid point j. The higher 

the gradient value the more often the interesting events occurrence. We assume that 
sensor measurement physically has a range (0~xmax); if the sensing vale v>xmax, then 
let v=xmax. 

According to importance level indicator nCΔ , the importance level ranking of 
each node in the network can be sorted. Consequently we can either deploy several 
new sensor nodes close to the most important nodes or remove redundant nodes from 
“quiet” spot to the vicinity of those “busy” nodes as a backup. 

5   Performance Evaluations 

The proposed EFOA algorithm is evaluated first. For the convenience of comparison, 
we set the initial parameters the same as in [13]: various number of sensors deployed 
in a field of 10×10 square kilometers area are investigated; the r and R used in the 
experiment are 1km and 2km (2km and 4km) respectively. So dn should be ranged as 
0~2 (0~4), not 0~10 as set by [13]. We assume each sensor is equipped with an omni-
antenna to carry out the task of detection and communication. Evaluation of our 
EFOA algorithm follows three criteria: field coverage, energy consumption and con-
vergence. Results are averaged over 100 Monte Carlo simulations.  

Figure 9 shows that the coverage of the initial random deployment, fuzzy optimi-
zation algorithm (FOA) proposed in [13] and our proposed algorithm EFOA when 
r=1km and R=2km. The FOA and EFOA algorithm have similar results that both of 
them can improve the network coverage by 20% ~ 30% in average. 

Figure 10 gives the results when r=2km and R=4km, the coverage comparison be-
tween random deployment, FOA and EFOA. In the case when 20 sensors are de-
ployed, initially the coverage after random deployment is around 86%. After FOA 
and EFOA algorithm are executed, the coverage reaches 97%. The coverage is dra-
matically improved in the low density network. The above two figures indicate that 
instead of deploying large amount of sensors, the desired field coverage could also be 
achieved with fewer sensors. 
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Fig. 9. Coverage vs. # of Nodes (R=2, r=1) 
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Fig. 10. Coverage vs. # of Nodes (R=4, r=2) 

Figure 11 shows the total number of nodes that remain alive over time where each 
node begins with 2J of energy and when R=4km and r=2km. The number of nodes in 
EFOA remains the same for a long time and they die out quickly almost at the same 
time while the first node dies early in FOA. The reason is that after some operation 
time, the network display heterogeneous characteristics, however, FOA doesn’t con-
sider the residual energy of nodes, so the energy difference among sensors becomes 
significant as time goes on. Network lifetime is the time span from the deployment to 
the instant when the network is considered nonfunctional. When a network should be 
considered nonfunctional, it is generally the instant when the first sensor dies or a 
percentage of sensors die and the loss of coverage occurs. Thus the lifetime is pro-
longed in EFOA compared with FOA. 
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Fig. 11.  # of nodes alive over time where 
each node begins with 2J energy. (R=4, r=2)
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Fig. 12. Standard deviation of distance trav-
eled verses number of nodes 

Figure 12 shows EFOA has lower standard deviation of distance compared with 
FOA in both cases when R=4km, r=2km and R=2km, r=1km with various number of 
nodes. When the standard deviation of distance traveled is small, the variation in 
energy remaining at each node is not significant and thus a longer system lifetime 
with desired coverage can be achieved. 

The network maintenance strategy is simulated thereafter as Figure 13 shows. The 
parameter xmax is set to be 50, sampling period is 5s.Total number of nodes in the 
network is 30, and two of the most importance nodes are the nodes labeled as 18 and 



19 which have the highest importance level. After adding four new nodes close to 
node 18 and 19, the importance level distribution become nearly uniform compared 
with the case before executing network maintenance strategy. Thus the working load 
of the “busy” nodes can be shared by the backup nodes and the lifetime can be further 
prolonged. 
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Fig. 13. Importance level verses node serial number 

6   Conclusions and Future Work 

In this paper, an energy-efficient fuzzy optimization algorithm (EFOA) for self- de-
ployment of mobile sensor networks was proposed. It was based on three descriptors 
– energy level of nodes, concentration and average distance to neighbors. The move-
ment of each sensor node was assumed to be relatively limited for further reducing 
energy consumption. The existing next-step move direction formulas were also im-
proved to be more realistic. Our approach has a great advantage to deal with the ran-
domness in sensor deployment as well as minimize energy consumption. We also 
proposed a network maintenance strategy in the post-deployment phase based on the 
sensor node importance level ranking. Simulation results showed that our approach 
not only achieved fast and stable deployment but also greatly improved the network 
coverage and energy efficiency as well as extended the lifetime.  

In the future work, the integration of environmental factors and realistic sensing 
model will be investigated. 
 
Acknowledgments. This research was supported by the MIC (Ministry of Informa-
tion and Communication), Korea, under the ITRC (Information Technology Research 
Center) support program supervised by the IITA (Institute of Information Technology 
Advancement) (IITA-2006-C1090-0602-0002). 



References 

1. Xiaoling Wu, Hoon Heo, et al.: Individual Contour Extraction for Robust Wide Area Target 
Tracking in Visual Sensor Networks. Proc of 9th ISORC (2006) 

2. S. Meguerdichian, F. Koushanfar, G. Qu and M. Potkonjak: Exposure in Wireless Ad-Hoc 
Sensor Networks. Mobicom (2001) 

3. S. Dhillon, K. Chakrabarty and S. Iyengar: Sensor placement for grid coverage under impre-
cise detections. Proc. International Conference on Information Fusion (2002) 

4. T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and K. k. Saluja: Sensor Deployment 
Strategy for Target Detection. WSNA, (2003) 

5. Sameer Tilak, Nael B. AbuGhazaleh, and Wendi Heinzelman: Infrastructure Tradeoffs for 
Sensor Networks.WSNA (2002) 

6. A. Howard, M. J. Mataric and G. S. Sukhatme: An Incremental Self-Deployment Algorithm 
for Mobile Sensor Networks. Autonomous Robots, Special Issue on Intelligent Embedded 
Systems, September (2002) 

7. J. Wu and S. Wang: Smart: A scan-based movement-assisted deployment method in wireless 
sensor networks. Proc. IEEE INFOCOM Conference, Miami, March (2005) 

8. G. Wang, G. Cao, and T. La Porta: Movement-assisted sensor deployment. Proc. IEEE 
INFOCOM Conference, Hong Kong (2004) 

9. Y. Zou and K. Chakrabarty: Sensor deployment and target localization based on virtual 
forces. Proc. IEEE INFOCOM Conference, Vol. 2 (2003) 1293-1303 

10. Nojeong Heo and Pramod K. Varshney: Energy-Efficient Deployment of Intelligent Mobile 
Sensor Networks. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems 
And Humans, Vol. 35, No. 1 (2005) 78 - 92 

11. Xiaoling Wu, Shu Lei, Yang Jie, Xu Hui, Jinsung Cho and Sungyoung Lee: Swarm Based 
Sensor Deployment Optimization in Ad hoc Sensor Networks. Proc. of ICESS’ 05 (LNCS), 
Xi’an, China, (2005) 533-541 

12. Xiaoling Wu, Yu Niu, Lei Shu, Jinsung Cho, Young-Koo Lee, and Sungyoung Lee: Relay 
Shift Based Self-Deployment for Mobility Limited Sensor Networks. UIC-06 (LNCS), Wu-
han, China (2006) 

13. Haining Shu, Qilian Liang: Fuzzy Optimization for Distributed Sensor Deployment. IEEE 
Communications Society / Proc. of WCNC, New Orleans, USA (2005) 1903-1907 

14. Indranil Gupta, Denis Riordan and Srinivas Sampalli: Cluster-head election using fuzzy 
logic for wireless sensor networks. Proc of the 3rd Annual Communication Networks and 
Services Research Conference (2005) 

15. Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan: An Application-
Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on 
Wireless Communications, Vol. 1, No. 4 (2002) 660 – 670 


