Scheduling Video Streams in a Large-scale
Video-On-Demand Server

Jinsung Cho and Heonshik Shin

Department of Computer FEngineering, Seoul National University
Seoul 151-742, Korea

Abstract

This paper addresses the design problems concerning a large-scale, parallel video-
on-demand server that consists of multiple clusters of nodes connected by a high
performance interconnection network. In order to efficiently control the flow of video
streams, we propose two scheduling algorithms for data retrieval and communica-
tion. First, we present a disk scheduling algorithm called round scheduling which
fully utilizes disk bandwidth, minimizing the disk idle time while the server retrieves
data blocks. Second, a communication scheduling algorithm is developed to guaran-
tee conflict-free communication over the multistage interconnection network that is
topologically equivalent to the Omega network. We also show some simulation re-
sults on the server configuration. Analysis of tradeoffs between the server utilization
and the startup latency helps to determine the proper number and size of server
clusters for a set of given nodes.

Keywords: multimedia, video-on-demand server, server cluster, round scheduling,
communication scheduling

1 Introduction

Recent advances in computer technology and demands of video, audio, and
text integration services have provided driving forces behind the emergence
of various multimedia applications including video-on-demand(VOD) services.
The realization of VOD services requires the development of the servers that
support efficient mechanisms for storing and delivering video streams to many
clients. The fundamental problem in developing such servers is that the de-
livery and playback of video streams must be performed at real-time rates.
Many prototype VOD servers have been developed[2-4]. They have focused
on the effectiveness of resource utilization such as disk and memory, while
guaranteeing the continuity of streams.

Preprint submitted to Elsevier Science 15 May 1997

Several telephone companies are planning to provide VOD services to the pub-
lic over telephone lines[1]. For the purpose of these large-scale service systems,
the server should store thousands of movies and serve tens of thousands of
concurrent clients. Assuming that MPEG-1 video streams require a playback
rate of 0.5 MBps, a 100-minute long movie requires 3 GB, and two thousand
movies require a capacity of 6 TB, or 1,200 disks of 5 GB. If we exploit the par-
allelism of disks in such a system and assume that the effective bandwidth of a
disk is 6 MB/s, 14,400 clients can be serviced simultaneously. The large-scale
server consists of storage nodes which store and provide video data, and net-
work nodes which deliver data to clients in a timely fashion. Communication
between nodes demands high bandwidth interconnections.

In this paper, we address the problems in designing a large-scale VOD server
which consists of a large number of nodes connected by a high performance
interconnection network. The design problems narrow down to how to clus-
ter such nodes and how to distribute and schedule movies, in the server. In
order to efficiently control the flow of video streams, we propose two schedul-
ing algorithms for data retrieval and communication. First, we present a disk
scheduling algorithm, round scheduling, which fully utilizes the disk bandwidth
of storage nodes. Second, we develop a communication scheduling algorithm
over Omega interconnection network. Exploiting our communication schedul-
ing algorithm, any pair of nodes in the server can communicate with each
other without conflict. Our algorithm results in the balanced communication
pattern generated by the server. We also show some analytical results on the
configuration of a server for given nodes.

Recent works[1,2] have tackled the problems of designing and implementing
VOD servers which consist of multiple nodes. Reddy[1] has proposed a simple
movie distribution and movie scheduling algorithm in a multiprocessor video
server. The proposed solution minimizes the contention for links over the in-
terconnection network, but cannot always guarantee conflict-free communica-
tion. He does not consider the effective management of the disk bandwidth and
assumes the homogeneous set of streams which contains the same playback
rate streams. In general, however, clients are likely to request heterogeneous
streams of which the playback rates are different from each other. On the
other hand, in [2], assuming a fiber optic cross-point switch in which there
is no scheduling problem, they have evaluated the effect of parameters used
in disk scheduling. We now aim at these problems in this paper. In addition,
their work[1,2] bounds the scalability of the server in terms of the number of
nodes. We analyze the configuration of a server for a large number of nodes.

The remainder of this paper is organized as follows: Section 2 describes our
system model and architecture for a large-scale VOD server. In Section 3, we
present our disk and communication scheduling algorithms which fully utilize
the server resources. Some numerical results for the performance analysis of

Server Cluster 1 /@
Server Cluster 2

[] [] [] / @
Server Cluster N

Fig. 1. The configuration of VOD system. Server nodes are grouped into clusters
which serve clients with movie streams independently.

@ Clients

our server are presented in Section 4, and Section 5 concludes this paper.

2 System Model

In many parallel/distributed VOD servers[2,5], each video stream is divided
into logical blocks, which are then distributed among multiple storage nodes
(referred to as data-striping). Data-striping implicitly achieves higher disk
bandwidth and load balancing[2]. In a small-scale distributed server, however,
a video stream is stored and serviced in a single storage node[5] (referred to
as no-striping).

Although the data-striping technique has the aforementioned advantages, it
has the following disadvantages: First, a distributed scheduling among storage
nodes is required. This imposes clock synchronization problems among all
nodes in the server. Second, start-up latency is relatively larger than the no-
striping case on account of scheduling problems. Start-up latency means the
time elapsed since a request is made to initiate a new stream until the stream
is serviced. Third, data-striping lacks scalability. If disks or storage nodes are
added to the server, the whole data must be redistributed among the disks.
Finally, the popularity of video streams cannot be considered. Since there is
no improvement in performance when more than one copy of the same movie
is placed on a disk[7], replicating popular movies in a server fails to increase
the number of clients that can be serviced simultaneously. Hence, a hybrid
technique of data-striping and no-striping is required.

For a given set of nodes, we divide it into server clusters as shown in Fig. 1.
Considering the advantages of data-striping, video streams are striped across
all the storage nodes in a server cluster. Video streams are allocated and repli-
cated among server clusters with respect to their popularity. Server clusters

Storage —— Network
node 0 node 0

Interconnection Network

node 1

Storage
node 1

Network

Network
noden

Storage
noden

Fig. 2. The architecture of a server cluster. Fach stream is striped across all storage
nodes and delivered to a client via network node.

provide movie streams for clients independently. A series of the movies stored
in server clusters is serviced at a service gateway. Considering the load bal-
ance among server clusters, the gateway provides clients with the address of
the server cluster that stores the requested movie. For a given set of nodes, the
appropriate number of server clusters or the number of nodes within a server
cluster (the size of a server cluster) will be described in Section 4. If the size
of a server cluster equals the number of nodes in the server, video streams are
striped across the server, that is, data-striping occurs in the server. On the
other hand, if the size of a server cluster is equal to one, no-striping scheme
is employed in the server.

Fig. 2 shows the architecture of a server cluster which consists of storage nodes
and network nodes. Storage nodes are responsible for storing video data and
delivering the required bandwidth to this data while network nodes are for de-
livering data blocks from storage nodes to clients. Each request stream would
originate at one of the network nodes in the server cluster. This network node
should deliver the video stream without violating the continuity requirement
of the stream. We consider Omega interconnection network[10] as the com-
munication network between storage nodes and network nodes. However, our
scheduling algorithm is applicable to other multistage interconnection net-
works which are topologically equivalent to Omega network[11]. Although
storage and network functions can reside on the same node by connecting
node 7 to input 7 and output i of the network, we will treat storage nodes and
network nodes separately in the rest of this paper. The next section focuses
on scheduling algorithms in a server cluster.

3 Scheduling Algorithms

Our VOD server architecture ! imposes the following problems: data distribu-
tion and disk scheduling at storage nodes, communication scheduling between
storage nodes and network nodes, and admission control for deterministic ser-
vice guarantee. In the following subsections we discuss these issues.

3.1 Data distribution

Data distribution refers to distributing the blocks of movies across the storage
nodes. This involves the order in which the blocks are striped across the storage
nodes. Data organization determines the bandwidth available to a movie, load
balance across the storage nodes, and communication patterns. Successive
blocks of a video object may be allocated to storage nodes either using a round-
robin or a random placement algorithm[2]. With random placement, successive
blocks are placed on storage nodes using a random permutation. Although the
random placement technique adapts to incremental growth, it may require
more meta-data and cause the load of storage nodes to be unbalanced. On
the other hand, the round-robin placement scheme places successive blocks
of a video stream on consecutive storage nodes (see Fig. 3) and allows the
streams to access storage nodes deterministically. However, this could cause
large start-up latency if start blocks of movies are placed at the same storage
nodes. Distributing the starting points of movies across the storage nodes
decreases the average start-up latency.

We now analyze the worst case start-up latency. As an illustration, suppose
three clients request movies A, B, and C respectively and that storage nodes
0, 1, and 2 serve the first blocks of A, B, and C, respectively, as shown in
Fig. 3. After the playback time T, of a disk block, storage nodes 1, 2, and 3
schedule the next block. If the fourth client requests movie D at this moment,
the schedule for block D.0 will be delayed until storage node 3 is idle; so the
loads are balanced across the storage nodes. Hence, the scheduling penalty is
37T ,14y. Supposing there are n storage nodes, the worst case start-up latency
will be modeled as follows:

(n - 1)Tplay + Tread(l) + Tcomm + Tnet S lentiicy7 (1)

where T,..q(k) denotes the time to read k disk blocks, Teomm is the time to
deliver a block from storage node to network node, and T,,.; is the time to

! For the description of algorithms in this section, the terms server cluster and
server are used interchangeably.

node0 nodel node2 node3
A.0 Al A2 A.3
A4 A5 A.6 A7

B.3 B.0 B.1 B.2
B.7 B.A4 B.5 B.6

C.2 C.3 C.0 C.1
C.6 c.7 C.4 C.5

D.1 D.2 D.3 D.0
D5 D.6 D.7 D4

Fig. 3. An example of data distribution. B.3 denotes the 3rd block of B stream. The
start block of each stream is distributed across storage nodes for load balancing.

deliver a block to clients.

By rewriting Eq. (1), the number of nodes in a server may be bounded to

n S (TlZLtiicy + Tplay - Tread(l) - Tcomm - Tnet)/Tplay- (2)
3.2 Disk scheduling

The performance of VOD servers is limited by their relatively low disk band-
width. This section describes a scheduling technique that fully utilizes the
disk bandwidth of storage nodes while satistying the continuity requirement
of video streams.

We first consider the process involved in serving a single client. A disk block
must be retrieved for the client every T,;,, seconds. From the standpoint of
a storage node, it must retrieve a disk block every n x T, seconds, where
n is the number of storage nodes. Thus, the retrieval of a disk block must be
completed within n x Ty,,.

We now consider s client requests, ry, r9, ---, 7s. In each storage node, s
retrievals for rq, ry, - - -, rs constitutes a round. That is, in a storage node, B},

round: (1) (2) (3) (4) (5) (6) (7) -
m: B BY B! B! B! B. B

Ty B% B% B% BZ
r3 ! Bi)’ Bg’ Bg’
Ty Bf B% B§ Bi‘ B§

time: 0 1 2 3 4 5 6

Fig. 4. A scenario of the simple round scheduling in a storage node. r; denotes the
ith client request and B} denotes j** disk block of r; in a storage node. The disk
bandwidth is not fully utilized.

BJZ, -+, B? are retrieved in the jth round, Wher¢ B; denotes the jth disk block
of r; in the storage node. Each disk block, B}, must be retrieved within its
deadline, n x T7,, . The deadlines of B}, 1 < i < s, will be met if the period
of a round is given by the shortest playback time of s disk blocks, n x T77",

where ;’f;; = minlSiSs(T;lw). In order to service s clients without violating
the continuity of streams, the following admission control criteria must be

satisfied.

Treaa(s) < nox Tom (3)

When clients access heterogeneous streams, 17, ’s of client request r;, 1 <

la
1 < s, are different from each other with respeci tyo the playback rate of video
streams. If), = T, = -+ = 17, = Tyiay then every n x Tpq, seconds, a
block for each client request is retrieved and consumed; thus not accumulated.
> Tﬁ;g, however, data accumulation will occur for r;. To avoid this
untoward effect, we opt to schedule the blocks to be retrieved in each round.
Such a procedure is called round scheduling. Fig. 4 shows a simple scenario
where n x T}, =1, n x T2, =2, nxT5,, =3, nxT, =15

As shown in this example, Bf, Bi, B}, B} are retrieved in the first round; B,
and Bj in the second round. As only two blocks are retrieved in the second
round, there exists disk idle time. Hence, the client requests that have failed
the admission control can be serviced during the idle time. For instance, if we
assume that four clients can be simultaneously serviced or that four blocks can
be retrieved in a round, and if r5 with n x 7)), = 1.5 and re with n x T, = 2
arrive, then the admission control for these two requests will fail. Requests
rs and re, however, can be serviced during the disk idle time. Fig. 5 shows

a schedule for this scenario. Further analysis of these cases results in the

following theorem. Let @ = {ils = 1,2,---; index for client requests} and
ki = T [T

round: (1) (2) (3) (4) (5) (6) (7) -
m: B BY B! B! B! B. B

ro: B} B2 B2 B2
r3: B} B3 B3
rq: B} B3 BY B B
Ts5 B} B} By B
Te BS BS BS

time: 0 1 2 3 4 5 6

Fig. 5. A scenario of the efficient round scheduling in a storage node. Requests rs5
and rg can be serviced during the disk idle time of Fig. 4.

Theorem 1 [t is possible to service a new request v, even when the admission
control fails, if the following relationships hold:

>k < 1 and a€Q. (4)
i€Q

Proof. k; for r; is the number of blocks retrieved in a round and k; < 1.
If there exists @) such that > ,co ki < 1 then the blocks for {r;]z € @} can
be retrieved. That is, for r;, ¢« € @, k;i/kui, blocks are retrieved once every
1/kmin rounds, where ky,;,, = minieg(k;). When the values of k;/kyi, is not
a whole number, the values are toggled between [k;/kpin| and |Ki/Kkmin], so
that k;/kni, blocks are retrieved once every 1/k,,;, rounds on the average.
Thus r, can be serviced. O

Let us apply Theorem 1 to rs and rg of Fig. 5. Since ky = 1/2, ks = 1/3,
ks = 2/3, ks = 1/2, there exist @)1 and @), for r5 and rg, respectively, such
that Q1 = {3,5}, Q2 = {2,6}. Hence ry and rg are serviced every other round.
A block for r3 and two blocks for r5 are retrieved in three rounds, and these
three rounds are repeated.

On the other hand, T,..q(s) in Eq. (3) should be optimized by disk head
scheduling[9]. CSCANI8] optimizes the disk seek time within two consecutive
rounds. For the purpose of deterministic service guarantees, T,..q.q4(s) may be
bounded to Tseer_mar + 8+ b/ R, where b is block size and R is data transfer
rate. This analysis can be also applicable when storage nodes have multiple
disks, or a disk array.

In consequence, Eq. (3) and Theorem 1 can be integrated as our final admission
control criteria.

3.3 Communication scheduling

In Section 3.2, we described the guaranteed retrieval of disk blocks in storage
nodes. These blocks must also be transmitted to network nodes in a determin-
istic fashion over an interconnection network. For further discussion we choose
the Omega network[12] as a candidate network in the server. This multistage
interconnection network has the property that each data block to be sent
through the network involves a unique path between source and destination.
Thus, for a given set of blocks it may not simultaneously transmit the mes-
sages because some of the blocks may conflict with one another. To reslove
such conflicts we may need to partition a set S of conflicting data blocks into
k subsets, Sq, - -+, Sk, such that each subset is conflict-free[10].

First, we consider communication patterns in the server. Our VOD server
distributes video streams across all storage nodes and proceeds in periodic
rounds at storage and network nodes. During a round, each storage node must
transmit to network nodes m data blocks prefetched in the previous round.
While delivering video data to network nodes, n storage nodes generate m x n
(s;, d;) pairs, where s; and d; denote a source and a destination, respectively.
In our environment, source means storage node and destination means network
node. On clients’ arrival at network nodes, requests are evenly distributed and
then sent to storage nodes for service; so the amount of data blocks that a
network node receives in return from storage nodes is the same as that of
other network nodes. Therefore, in m x n (s;,d;) pairs, each value of s; and d;
occurs m times exactly whereas the value of s; and d; ranges from 0 to n — 1.

We now describe our communication scheduling algorithm. A round is divided
into kn slots, and a data block is transmitted within a slot. For source node
s;, m data blocks are scheduled as follows:

(Si7di)7 Tty (Si7dn—1)7 (Si7d0)7 Tty (Si7di—1)7 e

It can be shown that all data blocks are transmitted during a round without
conflict based on the following theorem.

Theorem 2 For a set S of n xn (s;,,d;),0<i<n—1,0<7<n-—1, pairs
of communication paths, S can be partitioned into the following Sy ’s which are

conflict-free:

Sk={(sidiyx) | 0<i<n—1}, 0<k<n-—1

Storage node Network node

(disk communication)
scheduling scheduling

ER IR apat

Round i-2 Round i-1 Round i D BUffers

- /

Fig. 6. Data flow in our VOD server. Two buffers are required in both storage and
network node.

Proof. S can be partitioned into Si’s and it can be obtained from [12] that
Sk, 0 <k <n —1, is conflict-free. Therefore, the theorem holds. O

In general, considering the link bandwidth of interconnection networks is larger
than that of disks, a storage node can transmit more than m blocks to network
nodes, or kn > m. When kn > m, the admission control criteria we described
in Section 3.2 can be applied. If kn < m, the network becomes a bottleneck in
our VOD server, and a new client who demands that a storage node retrieve
more than kn blocks should be rejected. When m equals kn, the utilization of
all links in the network reaches 100%.

Since one of the major objectvies of designing VOD servers suggests that they
service as many clients as possible, sufficiently large buffers have been assumed
for our scheduling algorithms. We now observe the buffer requirement of our
VOD server. A data flow in our VOD server is shown in Fig. 6. Since the
schedules generated by disk scheduling and communication scheduling are dif-
ferent from each other, we employ the double buffering scheme at both storage
node and network node. For this reason 4 buffers per client are required in our
VOD server for deterministic service guarantees. The effective management of
shared buffers, however, will decrease buffer requirements.

4 Performance Analysis

We now examine the configuration of a large-scale VOD server for given stor-
age nodes. Our simulation model is based on the parameters listed in Table 1
that are considered suitable for the proposed large-scale server: For 640 stor-
age nodes given, data striping across all the 640 storage nodes causes several
problems, as described in Section 2. Especially, if we assume the block size
to be 256 KB, start-up latency will be larger than 300 seconds from Eq. (1).
Hence, we need to group storage nodes into server clusters. While Table 1

10

Table 1
Parameters used in our analysis

Number of storage nodes 640
Number of stored movies 2,000
Stream rate of a movie 0.5 MBps
Length of a movie 80 ~ 120 min.
Block size 256 KB
Disk bandwidth of storage node 20 MB/s
Link bandwidth of network 20 MB/s
Table 2
The alternatives in the configuration
Number of server clusters 5 10 20 40 | 80
Number of storage nodes 128 64 32 16 8

Capacity of a server cluster || 5,120 | 2,560 | 1,280 | 640 | 320

Start-up latency(sec) 64 32 16 8 4

shows the parameters used in our analysis, performance analysis is based on
a set of various alternatives for server configuration as listed in Table 2. By
capacity of a server cluster in Table 2 we mean the number of clients that can
be serviced simultaneously in a server cluster and by start-up lantency the
value in the worst case. In normal cases, the values are far smaller. All the
alternatives in Table 2 can service 25,600 concurrent clients when the loads
are totally balanced across server clusters.

Based on video store rental patterns, it is known that accesses to movies in the
server will be highly localized, with a small number of movies receiving most
of the accesses[6]. According to Zipf’s Law[6] the probability of choosing the
nth most popular one from M movies is C'/n, where C = 1/(14+1/2+1/3 +
-+« + 1/M). Thus, replicating popular movies in server clusters can keep the
load of server clusters balanced. In this experiment we allocate 1,000 movie
titles to server clusters in the round-robin manner according to their ranking
and replicate top ranking movies in all the server clusters. For example, when
there are 10 server clusters, each server cluster has 100 unreplicated movies
and the top 100 replicated movies.

First, we carry out the simulation under the worst case assumption that 25,600
clients request concurrently. Movie requests are localized according to the
Zipt’s distribution. Simulation results are shown in Fig. 7. The analysis of this
graph results in the following assertions: (1) Replicating popular movies shows
better performance. It is possible to service 50 to 250 more clients. (2) Until

11

600

500 8
r No replication

400 - Replication i

300 8

200 - b

100 - b

Number of clients not serviced

5 10 20 40 80
Number of server clusters

(a) Number of clients not serviced

100

No replication
99 L Replication _|

97 b

Avg. utilization of server clusters (%)

95

5 10 20 40 80
Number of server clusters

(b) Average utilization of server clusters

Fig. 7. Performance under the worst case assumption

the number of server clusters becomes 20, the average utilization? of server
clusters is close to 100%. (3) When there are large numbers of server clusters,
there exist hot spots among server clusters, those places where there are likely
to be far more client requests.

Second, we simulate the real VOD service with replication. It is assumed that
clients arrive at the server according to the Poisson distribution with mean
interarrival time, 1/, and that the running time of each movie is uniformly
distributed between 80 and 120 minutes. Fig. 8(a) shows similar results to
Fig. 7. When the load becomes smaller in Fig. 8(a), the average utilization
of server clusters decreases. This is because there exist hot spots among the
server clusters whereas the other server clusters are underutilized. In Fig.

24 of clients being serviced/ # of clients can be serviced

12

100 & B & ——a—

99 [

98 G—oO 5 Server clusters
3—+£110 Server clusters
L 20 Server clusters
97 | A—~A40 Server clusters
80 Server clusters

96]

Avg. utilization of server clusters (%)

95 L L L L
1.0 2.0 3.0 4.0 5.0
Mean interarrival time (sec)

(a) Average utilization of server clusters

6000
5000 G—O 5 Server clusters .
’g ——F110 Server clusters 1
K2 4000 20 Server clusters 1
o /A—2A 40 Server clusters
g b 80 Server clusters
g’ 3000 4
= :
g. 2000 R
o [
< [
1000 - R
0 : = ol
1.0 2.0 3.0 4.0 5.0

Mean interarrival time (sec)

(b) Average waiting time
Fig. 8. Performance under the average case

8(b), the larger the number of server clusters is, the longer the average waiting
time? becomes. It also results from hot spots where the waiting time is longer.
In addition, since the running time of movies is relatively long, the average
waiting time under heavy load (1/A = 1,2) is long as shown in Fig. 8(b).

In summary, given a large number of nodes, clients experience relatively large
start-up time when the number of server clusters is small, or the size of a server
cluster is large. On the other hand, when the number of server clusters is large,
client requests are not balanced among server clusters, that is, there exist hot
spots, even though popular movies are replicated. Consequently, the tradeoff
of large versus small clusters provides a basis for the design of most effective
server configuration. As to the size of a server cluster, it can be determined

3 The waiting time means only queueing delay here.

13

based on the analysis of tradeoffs between the utilization and start-up latency.
In the example given above, our simulation reveals that the most appropriate
size of a server cluster is 32 storage nodes, since the average utilization of
server clusters is close to 100% while the start-up latency is relatively small.
This value is feasible by current technologies.

5 Conclusions

In this paper, we have presented the solutions for designing a large-scale VOD
server which consists of a large number of nodes connected by a high perfor-
mance interconnection network. Given hundreds of storage nodes, we divide
them into server clusters, which service video streams independently. In a
server cluster, two scheduling algorithms are proposed in order to fully utilize
the resources: disks and networks. The round scheduling technique retrieves
data blocks from disks effectively minimizing the disk idle time, and the com-
munication scheduling guarantees conflict-free communication over the mul-
tistage interconnection networks that are topologically equivalent to Omega
network.

We also show some analytical results on the configuration of a server for given
nodes. As the number of storage nodes in a server cluster becomes smaller,
start-up latency decreases, but hot spots develop among the server clusters.
We have shown, however, that the replication of movies keeps the utilization of
server clusters high. Analysis of tradeoffs between the utilization and the start-
up latency help to decide a design strategy for selecting the most appropriate
number of server clusters and the size of server clusters for given nodes.

The following problems remain to be addressed in the future: (1) effective
buffer management in storage and network nodes and (2) supporting interac-
tive operations (e.g., fast forward, rewind, pause, and resume).

References

[1] A. L. N. Reddy, Scheduling and data distribution in a multiprocessor video
server, in: Proc. International Conference on Multimedia Computing and
Systems (Washington, DC, 1995) 256-263.

[2] R. Tewari, R. Mukherjee, D. M. Dias, and H. M. Vin, Design and performance

tradeoffs in clustered video servers, in: Proc. International Conference on
Multimedia Computing and Systems (Hiroshima, Japan, 1996) 144-150.

14

[3] S. Ghanderharizadeh and L. Ramos, Continuous retrieval of multimedia data
using parallelism, IEFE Transactions on Knowledge and Data Fngineering 5
(1993) 658-669.

[4] C. S. Freedman and D. J. DeWitt, The SPIFFI scalable video-on-demand
system, in: Proc. 1995 ACM SIGMOD (San Jose, CA, 1995) 352-363.

[6] A. Heybey, M. Sullivan, and P. England, Calliope: A distributed, scalable
multimedia server, in: Proc. USENIX 1996 Annual Technical Conference (San
Diego, CA, 1996).

[6] A. L. Chervenak, D. A. Patterson, and R. H. Katz, Choosing the best storage
system for video service, in: Proc. ACM Multimedia ’95 (San Francisco, CA,
1995) 109-119.

[7] T. D. C. Little and D. Venkatesh, Probabilistic assignment of movies to storage
devices in a video-on-demand system, in: Proc. International Workshop on
Network and OS Support for Digital Audio and Video (Lancaster, U.K., 1993)
213-224.

[8] J. L. Peterson and A. Silberschatz, Operating System Concepts (2nd Ed.,
Addison-Wesley, 1985).

[9] M.-S. Chen, D. D. Kandlur, and P. S. Yu, Optimization of the grouped
sweeping scheduling (GSS) with heterogeneous multimedia streams, in: Proc.
ACM Multimedia 93 (Anaheim, CA, 1993) 235-242.

[10] P. J. Bernhard, Bounds on the performance of message routing heuristics, IEEF
Transactions on Computers 42 (1993) 1253-1256.

[11] C. L. Wu and T. Y. Feng, On a class of multistage interconnection networks,
IEEE Transactions on Computers C-29 (1980) 694-702.

[12] D. H. Lawrie, Access and alignment of data in an array processor, [FEF
Transactions on Computers C-24 (1975) 1145-1155.

15

