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Abstract. In the dental field, 3D tooth modeling, in which each tooth
can be manipulated individually, is an essential component of the
simulation of orthodontic surgery and treatment. However, in dental
computerized tomography slices teeth are located closely together
or inside alveolar bone having an intensity similar to that of teeth.
This makes it difficult to individually segment a tooth before building
its 3D model. Conventional methods such as the global threshold
and snake algorithms fail to accurately extract the boundary of each
tooth. In this paper, we present an improved contour extraction al-
gorithm based on B-spline contour fitting using genetic algorithm.
We propose a new fitting function incorporating the gradient direc-
tion information on the fitting contour to prevent it from invading the
areas of other teeth or alveolar bone. Furthermore, to speed up the
convergence to the best solution we use a novel adaptive probability
for crossover and mutation in the evolutionary program of the ge-
netic algorithm. Segmentation results for real dental images demon-
strate that our method can accurately determine the boundary for
individual teeth as well as its 3D model while other methods fail.
Independent manipulation of each tooth model demonstrates the
practical usage of our method. © 2007 Society for Imaging Science
and Technology.
�DOI: XXXX�

INTRODUCTION
The accurate 3D modeling of the mandible and the simula-
tion of tooth movement play an important role in preopera-
tive planning for dental and maxillofacial surgery. The 3D
reconstruction of the teeth can be used in virtual reality
based training for orthodontics students and for preopera-
tory assessment by dental surgeons. For 3D modeling tooth
segmentation to extract the individual contour of a tooth is
of critical importance. Automated tooth segmentation meth-
ods from 3D digitized images have been researched for the
measurement and simulation of orthodontic procedures.1

These methods provide interstices along with their locations
and orientations between the teeth for segmentation result.
However, it does not give individual tooth contour informa-
tion which manifests more details that are helpful in dental
study. A thresholding method, used in the existing segmen-
tation and reconstruction systems, is known to be efficient
for automatic hard tissue segmentation.2,3 Some morpho-
logical filtering methods are used for creating intermediary
slices by interpolation for modeling teeth in 3D.4 The mor-
phological operations are also combined with the threshold-

ing method for dental segmentation in x-ray films.2 How-
ever, neither the thresholding method nor the morphological
filtering method is suitable for separating individual tooth
regions using tooth computerized tomography (CT) slices,
because some teeth touch each other and some are located
inside of alveolar bone with a CT slice intensity profile simi-
lar to teeth.5 A modified watershed algorithm was suggested
to create closed-loop contours of teeth while alleviating the
over-segmentation problem of the watershed algorithm.5 Al-
though this reduces the number of regions significantly, it
still produces many irrelevant basins that make it difficult to
define an accurate tooth contour. A seed-growing segmen-
tation algorithm6 was suggested based on B-spline fitting for
arbitrary shape segmentation in sequential images. The best
contour of an object is determined by fitting the initial con-
tour passed by previous frame to the edges detected in the
current frame. For the fitting operation, the objective func-
tion defined by the sum of distances between the initial con-
tour and the object edges is used. For this algorithm to work
properly, the complete object boundary should be extracted
by global thresholding and the object should be located
apart from other objects. If other objects are located nearby
as in the case of the tooth CT image, the shape of the initial
contour should be very close to the actual object contour to
prevent being fitted to the boundaries of the nearby objects.

Many snake algorithms have been proposed for medical
image analysis applications.7–10 However, in the CT image
sequence where objects are closely located, the classical snake
algorithms have not yet been successful due to difficulties in
initialization and the existence of multiple extrema. It is only
successful when it is initialized close to the structure of in-
terest and there is no object which has similar intensity val-
ues to those of interest.7 The snake models for object
boundary detection search for an optimal contour that mini-
mizes (or maximizes) an objective function. The objective
function generally consists of the internal energy represent-
ing the properties of a contour shape and the external po-
tential energy depending on the image force. The final shape
of the contour is influenced by how these two energy terms
are represented. However, many snakes tend to shrink when
its external energy is relatively small due to the lack of image
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forces.7 Some snakes also suffer from the limited flexibility of
representing the contour shape and a large number of de-
rivative terms in their internal energy representation. A
B-spline based snake has been developed as a B-spline snake
and B-snake to enhance the geometric flexibility and opti-
mization speed by means of a small number of control
points instead of snaxels.11,12 B-spline snake controls con-
tour shapes by a stiffening parameter as well as its control
points, and detects object boundaries in noisy environments
by using gradient magnitude information instead of edge
information. This algorithm introduces a stiffening factor to
the B-spline function13 that varies the spacing between the
spline knots and the number of sampled points used during
the evaluation of the objective function. In addition, the
factor controls the smoothness of curve and reduces the
computation of the cost function. Although the algorithm
was proposed to extract the contour of a deformable object
in a single image, it can be applied to the tooth segmentation
in CT slices. However, in tooth CT data, the algorithm may
cause the contour of a tooth to expand to include contours
of nearby teeth and alveolar bone, or it may cause the con-
tour to be contracted to a small region.

A B-spline fitting algorithm employing a genetic algo-
rithm (GA) was used to overcome local extrema indwelling
in the vicinity of an object of interest.14–17 In this case, it was
shown that the GA does not require exhaustive search while
avoiding high-order derivatives for curve fitting or matching
problems.18,19 However, the conventional GA-based B-spline
fitting still suffers from the influence of other objects and
often fails to extract the object boundary from the image
sequences when similar objects are adjacent to each other.

In this paper, we propose an improved B-spline contour
fitting algorithm using a GA to generate a smooth and ac-
curate tooth boundary for the 3D reconstruction of a tooth
model. We devise a new B-spline fitting function by incor-
porating the gradient direction information on the fitting
contours to search the tooth boundary while preventing it
from being fitted to neighboring spurious edges. We also
present an evolution method to accelerate the search speed
by means of automatic and dynamic determination of GA
probabilities for crossover and mutation. Experimental re-
sults show that our method can successfully extract the in-
dividual tooth boundary, compared with other methods
which fail to do so.

BACKGROUND
Dental CT images have the following two distinct character-
istics: (1) An individual tooth often appears with neighbor-
ing hard tissues such as other teeth and alveolar bone, and
(2) these neighboring hard tissues have the same or similar
intensity values to the tooth of interest. Thus, the fixed
threshold value for each tooth in each slice is not effective as
shown in Figure 1. When we try to obtain a tooth region by
thresholding method, the lower and upper limits of a thresh-
old value can be displayed at each slice for a given tooth by
the two curves in Fig. 1. Any threshold value within the limit
produces the tooth region with the accuracy better than

90%. It shows us that individual segmentation method is
required for each tooth in each slice.

There are many segmentation methods, each of which
have their own limitations in separating individual tooth
regions on CT images.3–6 An optimal thresholding scheme20

can be attempted by taking advantage of the fact that the
shape and intensity of each tooth changes gradually through
the CT image slices.

However, even if an optimal threshold is determined for
every slice, the result of the segmentation is found unsatis-
factory because of neighboring hard tissue. For the 3D re-
construction of an individual tooth model, the tooth bound-
ary needs to be defined more precisely.

B-Spline Contour Fitting
The B-spline curve has attractive properties for the represen-
tation of an object contour with arbitrary shape. They are
also suitable for the curve fitting process and are summa-
rized as follows.

• An object of any shape, including those subsuming an-
gular points, can be represented by a set of control
points, a knot sequence, and a basis function. The shape
of the contour can be adjusted by simply repositioning
the control points in many fitting problems where the
knot sequence and basis function can be fixed.

• Little else remains to be different in the shape of the
contour by deducting the number of control points
within some tolerable limit for the purpose of reducing
information needed for fitting process. This allows the
fitting process to be faster with fewer variables over
which to optimize.

We choose the uniform cubic closed B-spline curve,
shown as follows in Eqs. (1) and (2), to describe the object
contours in the image:

r�s� = �rx�s�

ry�s�� = ��
i=0

n−1

xiB0�s − i�

�
i=0

n−1

yiB0�s − i�� , �1�

Figure 1. Threshold values for a certain tooth computed at different slices
by manual.
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B0�s� = �	s	3/2 − s2 + 2/3 if t0 � 	s	 � t1,

�2 − 	s	�3/6 if t1 � 	s	 � t2,

0 otherwise.

�2�

In the equations, r�s� represents the coordinate of a contour
pixel at a specific value of parameter s and �xi ,yi� represents
coordinates of ith control point. The B-spline basis func-
tions are translated copies of B0�s�. In the case of tooth
segmentation we use a closed uniform knot sequence, as

t0 , t1 , . . . , tn�= 
0 ,1 , . . . ,n� and t0 = tn where n is the total
number of the control points.

The B-spline fitting function f is represented in Eq. (3)
(Ref. 11) as follows:

f = �
k=0

M−1

	�I�r�sk�
	 , �3�

where M is the total number of contour points. The fitting
function is maximized when the contour conforms to the
object boundary. The B-spline fitting function makes use of
only external force computed based on the gradient magni-
tude on the contour. The smoothness constraint is implicitly
represented by the B-spline itself.

B-spline Contour Fitting using Genetic Algorithm
The genetic algorithm is a probabilistic technique for search-
ing for an optimal solution. The optimal solution is de-
scribed by a vector, called a “chromosome,” which can be
obtained by maximizing a fitting function. Hence the defi-
nition of the fitting function significantly affects the solution
state. A sequence of evolutionary operations is repeated for a
chromosome to evolve to its final state. The end of the evo-
lutionary operation is determined by checking the fitness
values, which represent the goodness of each chromosome in
the population.

A chromosome is a collection of genes, and a gene rep-
resents the control point of B-spline. Since the chromosome
represents a complete contour and a gene uses the actual
location of a control point, the search algorithm has neither
ambiguity on the contour location nor potential bias to par-
ticular shapes. To reduce the size of a gene, we use the index
value as a gene, instead of two coordinate values.16,17 Com-
posing a search area based on the indices provides a search
area with arbitrary shape, where it is confined to search for
the final position of the control point to be found out. This
scheme of chromosome guarantees that gene information
does not spread over the chromosome, which results in short
length and order of schema.16 Accordingly, there is a high
probability to converge fast. A new generation is made
through the sequence of evolutionary operations and, during
the evolutionary processes, crossover and mutation steps af-
fect the quality and speed of final solution significantly.

IMPROVED B-SPLINE CONTOUR FITTING USING
GENETIC ALGORITHM
Fitting Function Based on Gradient Magnitude and
Direction
The fitting function measures the fitness of the possible con-
tour to the object boundary in the current slice. The fitness

value is the basis for determining the termination of the
evolutionary process and selecting elite chromosomes for
mating pool generation. In the existing active contour mod-
els, the fitting function consists of the internal forces con-
trolling the smoothness of the contour and the external force
used for representing the object boundary information in
the image.7,12 One drawback of this representation is that it
requires the determination of the weight values balancing
these two components.

B-spline snake makes use of a simple fitting function
with only external force computed based on the gradient
magnitude on the contour. The internal force terms are re-
placed by using a stiffening parameter and implicit smooth-
ness constraint of the B-spline representation of a contour.
However, in the image data such as the tooth CT image
slices, those fitting functions often generate the contour fit-
ted to the boundary of nearby object. They also generate the
contour contracted to a small region unless the stiffening
parameter is set properly.

Note that the magnitude of the intensity difference may
vary between the inside and outside of an object contour.
However, if the relative intensity between two sides of a con-
tour is maintained throughout the contour, the sign of the
intensity difference made by two sides is inverted when the
contour expands out to the boundary of another object.
Hence, when fixing moving direction of parameter s along
the curve, we are able to have knowledge of which side is
inside (or outside) in advance. This enables us to know
whether the contour is fitted to the object of interest or other
adjacent objects. In this paper, the fitting function to be
maximized is designed to take advantage of this property of
the data. This gradient direction information allows the fit-
ness function to penalize the portion of a contour fitted to
the neighboring object.

To compute the fitness value for a possible solution (or
chromosome), we first generate the contour points from the
B-spline representation of the solution and trace the contour
as shown in Figure 2(a). At the kth contour point r�sk�, a
unit normal vector n�sk� is computed. Next, the inner region
and outer region pixel location pk

i and pk
o, respectively, are

Figure 2. �a� Definition of inner and outer regions. �b� Illustration for
fitting function—right object is of interest, with adjacent left object, and
thick black curve is a fitting curve. �c� Twisted contour.
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identified by using n�sk� computed at the kth point r�sk�
according to

pk
o = r�sk� + n�sk� �4�

and

pk
i = r�sk� − n�sk� . �5�

Then, the fitness value is determined based on gradient
magnitude and direction information, �k, at each contour
point according to

f = �
k=0

M−1

��k − �k� , �6�

where

�k = �	�I�r�sk�
	 if I�pk
i � − I�pk

o� � 0,

− 	�I�r�sk�
	 if I�pk
i � − I�pk

o� � 0,

and

�k = �C , r�sk� = r�sj�

0, r�sk� � r�sj�
, ∀ j � 
0,1, . . . ,M − 1� ∧ j � k .

I�pk
i � and I�pk

o� are intensity values of the inside and outside
of the kth contour point, respectively. This equation is fur-
ther illustrated by Fig. 2(b), where some portion of the con-
tour attaches to another object and in this portion I�pk

i �
� I�pk

o�, so we assign the negative gradient magnitude to
penalize the fitness value. The figure also shows that in other
portions the contour correctly conforms to the tooth bound-
ary and in these portions I�pk

i �� I�pk
o�, so we assign the

positive gradient magnitude to the fitness value. Note that
when there is no difference of gradient direction, which may
happen if inner and outer pixel values are identical, then
I�pk

i �= I�pk
o�. This aims at preventing the contour from being

misfitted when the contour lies inside an object region hav-
ing uniform intensity values, such as the inside region of a
tooth.

A constant-valued penalty C is deducted from the fit-
ness value when the contour is twisted as shown in Fig. 2(c).
Our experimental results showed that setting the penalty too
high hindered searching the contour maximizing the sum of
gradient magnitudes. The proposed fitting method yields the
best performance when C is set to around 0.1% of the sum
of gradient magnitudes.

Improved Adaptive Evolutionary Operations
The evolutionary process generates a new population of pos-
sible solutions through the following three genetic operators:
reproduction (or selection), crossover, and mutation. The
selection operation constructs the mating pool from the cur-
rent population for the crossover operation. The results pre-
sented here use a tournament selection scheme.16 The cross-
over operation generates two child chromosomes by
swapping genes between the two parent chromosomes. In
this paper we present one point cutting scheme by improved

adaptive crossover probability. We also use an adaptive mu-
tation probability scheme for our evolutionary process.

The conventional GA generally uses fixed crossover and
mutation probabilities. Adaptive genetic algorithm21 (AGA)
was proposed by Srinivas et al. that uses variable crossover
and mutation probabilities that are determined automati-
cally based on fitness values during fitting process for fast
convergence rate. The probabilities for evolution are, there-
fore, no longer required to be set to constants. At the begin-
ning stage of the fitting process, we consider all the possi-
bilities of control point locations in the search area. As the
process goes on, we obtain the evolutionary probabilities
such that the possible solution near the optimal solution
quickly converges to the actual solution. In AGA,21 the cross-
over probability is adaptively determined depending on the
fitness value f, according to

pc = �k1

fbest − f

fbest − favg

, f � favg,

k2, f � favg,

�7�

where fbest and favg are the best and average fitness values in
the mating pool, respectively, and k1 and k2 are constants
and set to 1.0. Hence, if f= fbest when f� favg, f is preserved,
although the value of k1 ensures high occurrence of cross-
over. If f� favg, crossover is operated without exceptions,
since its corresponding chromosome has low fitness value.

The mutation operation is also implemented by using
the mutation probability pm as follows:

pm = �k3

fbest − f

fbest − favg

, f � favg,

k4, f � favg,

�8�

where k3 and k4 are constants set to 0.5. As in the case of
crossover, the mutation operation does not affect the chro-
mosome with the best fitness value. However if f� favg its
mutation operation takes place with the most ambiguity
since k3 =0.5.

In this paper we propose an improved adaptive cross-
over probability. To maintain the solution with high fitness
value, we generate a random number pr and consider the
relationship of pr with pc1 and pc2, where pc1 and pc2 denote
crossover probabilities generated from two parent chromo-
somes, father chromosome and mother chromosome respec-
tively. When two parent chromosomes are selected, two chil-
dren are generated as follows.

(1) Generate a random number pr between 0 and 1 to
determine the adaptive crossover probability, gener-
ate a random number pl between 0 and 1 to deter-
mine the crossing site, and generate a random
number ps between 0 and 1 to determine which
side of the crossing site the portion of the chromo-
some should exchange with the corresponding por-
tion of its mate.
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(2) Replace f in Eq. (7) by the fitness value of each
parent for computing the crossover probabilities,
pc1 and pc2.

(3) If pr �pc1 and pr �pc2, put the two parents to the
next generation without change.

(4) If pr is between pc1 and pc2, thus pc1 �pc2 and ps

�0.5 then the left portion of the father chromo-
some should be exchanged with the corresponding
portion of the mother chromosome to generate one
child and put mother chromosome directly to the
generation as another child. If ps �0.5 then the
right portion from the father chromosome should
be exchanged to generate one child and another
child is a copy of the mother chromosome. Simi-
larly if pc1 �pc2 then the mother chromosome
should be changed and put to the next generation
while the father chromosome is put to the next
generation without any change. In addition, the
crossover scheme is determined by the value of ps.

(5) If pr is less than both pc1 and pc2, generate two child
chromosomes as the normal crossover method
does.

In the proposed operation, the chromosomes with high
fitness values can survive until a new chromosome with
higher fitness is created. It supports rapid searching for an
optimal solution by taking advantage of the crossover
scheme swapping either side to the crossing site.

EXPERIMENTAL EVALUATION
We tested the proposed contour segmentation with two
kinds of sets of data: synthetic images and two sets of real
dental CT image sequences with a slice thickness of 0.67mm
and 1mm and x-y resolution of 512�512. Visual C++ with
DICOM libraries22 for reading 16-bit CT images and the 3D
graphics library OpenGL were used as tools to implement
the proposed algorithm. CT images are saved in DICOM
format, an international standard for medical images, after
acquisition through the commercially available Shimadzu
Ltd. SCT-7800 CT scanner. The test data were prepared to
reveal the capability of the proposed algorithm in finding an
accurate boundary among many similar objects nearby. We
compared the proposed algorithm with the existing B-spline
snake algorithm that uses the gradient magnitude based ex-
ternal force in the fitting function.11

First, we applied these algorithms to a synthetic image
similar to a tooth surrounded by alveolar bone. To generate
the results, we constructed a B-spline contour with 8 control
points and selected 20 initial chromosomes for each 40
�40 window. For the following examples of B-spline snake
the stiffening parameter is set to 2. As shown in Figure 3, the
proposed algorithm extracts an accurate object boundary
while the existing B-spline snake fails.

We also applied the two algorithms to real CT image
sequences where an individual tooth often appears with
neighboring hard tissues such as other teeth and alveolar
bone. If too many control points are used for a contour, it
reduces the smoothing effect on the curve and consequently

generates twisted parts of contour as shown in Figure 4.
Figure 5 shows part of test results using different set of slices,
which have lower resolution. Since the test image is small, a
10�10 search area suffices for a control point.

As shown in Fig. 5, an individual tooth often appears
with neighboring hard tissues such as other teeth and alveo-
lar bone, and the proposed algorithm produces better results
than B-spline snake. The difference in the results stems from
the fitting function.

Part of the segmentation results of slice sequences is
shown in Figure 6 and those of a molar having a more
complicated shape are shown in Figure 7. In Fig. 6, the fig-
ures at the far left side show the results of teeth initialization
for the first slice by applying a proper threshold to each
tooth interactively. As the segmentation is performed slice by
slice, in contrast with the results of proposed method, malfit-
ting error contained in the results of the existing method
increases.

Table I lists part of the numerical results of the segmen-
tation. N is the number of slices over which each tooth
spans. FPE (false positive error) is the percent of area re-

Figure 3. Contours extracted from the synthetic data �number of control
points CP=8�. �a� By B-spline snake method. �b� By the proposed
method.
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ported as a tooth by the algorithm, but not by manual seg-
mentation. FNE (false negative error) is the percent of area
reported by manual segmentation, but not by the algorithm.
Similarity and dissimilarity indices,23,10 which show the
amount of agreement and disagreement, Sagr and Sdis, re-
spectively, between the algorithm area Aalg and the manual
segmentation area Aman, are computed according to

Sagr = 2
Aman � Aalg

Aman + Aalg

, �9�

Sdis = 2
Aman � Aalg − Aman � Aalg

Aman + Aalg

. �10�

These indices are calculated for validation on N slices of
each tooth. Averaged values of Sagr as well as its minimum
and maximum values are shown in Table I, and we conclude

that the proposed method for segmentation isolates indi-
vidual region of tooth successfully, in contrast with the re-
sults of B-spline snake shown in Table II.

The proposed fitting method is designed for the fast
contour extraction by the improved crossover method which
uses a random number for copying genes of a superior chro-
mosome to an inferior one when the random number falls
into the range of crossover probabilities of its parents, pc1

and pc2. Furthermore, the proposed crossover method de-
cides which part of crossing site will be exchanged between
parent chromosomes. The decided part fosters chromo-
somes to be competent with a high fitness value. We imple-
ment two genetic B-spline fittings with existing crossover
methods to analyze the performance of the proposed cross-

Figure 4. Tooth contours extracted from CT image �CP=16�. �a� By the
proposed method. �b� By B-spline snake.

Figure 5. Tooth contours extracted from CT image sequence �CP=8�.
�a� By the proposed method. �b� By B-spline snake.
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over. Both existing methods generate the initial population
randomly, with uniform distribution, while using different
crossover methods. “Method A” uses a fixed pc of 0.75 and
“Method B” uses AGA, which determines pc adaptively. Fig-
ure 8 compares the convergence rate of the proposed cross-
over method with those of the existing methods in terms of
the fitness value along chromosome generation. The figure
shows that the proposed crossover method results in a better
convergence rate than either method A or B. The proposed
crossover method preserves the chromosomes with high fit-
ness for fast convergence and the results shows it is effective
to randomly select either side to crossing site for improved
crossover operation.

Figure 6. Tooth contours extracted from CT image sequence �CP=16�.
�a� By the proposed method. �b� By B-spline snake.

Figure 7. Extracted contours of molar �CP=32�. �a� By the proposed
method. �b� By B-spline snake.

Table I. Segmentation results for 8 teeth of the proposed method from the same scans
of CT set.

Tooth N FPE�%� FNE�%� Sagr Smin Smax Sdis

1 20 4.43 8.37 0.935 0.915 0.977 0.131

2 22 7.88 3.45 0.945 0.916 0.973 0.111

3 25 8.96 4.48 0.935 0.901 0.968 0.131

4 24 8.46 6.47 0.926 0.905 0.970 0.148

5 27 5.81 8.29 0.929 0.917 0.967 0.143

6 26 2.07 7.05 0.953 0.923 0.971 0.094

7 25 5.21 3.79 0.955 0.927 0.976 0.089

8 23 5.69 1.42 0.965 0.932 0.983 0.069

Table II. Segmentation results for 8 teeth of B-spline snake from the same scans of CT
set.

Tooth N FPE�%� FNE�%� Sagr Smin Smax Sdis

1 20 6.12 27.21 0.814 0.574 0.952 0.373

2 22 26.01 1.16 0.879 0.628 0.956 0.241

3 25 45.86 11.28 0.756 0.316 0.897 0.487

4 24 29.89 4.59 0.842 0.764 0.941 0.313

5 27 28.06 8.06 0.836 0.726 0.933 0.328

6 26 15.09 8.81 0.884 0.818 0.948 0.232

7 25 27.98 5.03 0.852 0.755 0.936 0.296

8 23 10.12 3.89 0.932 0.771 0.972 0.136

Figure 8. Comparison of convergence rates.
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Individual segmentation of all teeth can be used to re-
construct a model of the mandible, as shown in Figures 9
and 10. Every tooth can be separated from the jaw for simu-
lation of dental treatments.

CONCLUSIONS
In this paper, we presented the improved genetic B-spline
curve fitting algorithm for extracting individual smooth
tooth contours from CT slices while preventing the contour
from being twisted. This enables us to obtain individual ac-
curate contours of teeth by overcoming the problem of the
contour of a tooth expanding out to other teeth boundaries
in the fitting process. Furthermore, we also devised the
crossover method which accelerates convergence rate by
means of both conserving chromosomes with high fitness
value and allowing exchange of either side of cross site. The
test results show that the proposed segmentation algorithm
successfully extracts a smooth tooth contour under specific
conditions such as the existence of objects in close vicinity.

This paper also demonstrated the possibility of recon-
struction of a 3D model in which each tooth was modeled
and manipulated separately for the simulation of dental sur-

gery. These anatomical 3D models can be used for facilitat-
ing diagnoses, pre-operative planning and prosthesis design.
They will provide radiography of the mandible, an accurate
mechanical model of the individual tooth and that of its root
for endodontics and orthodontic operations. Hence the 3D
reconstruction of the teeth can be used in virtual reality
based training for orthodontics students and for preopera-
tory assessment by dental surgeons.
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