
A Partitioning Scheme to Guarantee Minimum
Execution Time for Multiple Applications in Sensor

Network Nodes

Daehoon Kim
Dept. of Computer Engineering

Kyung Hee University
Yongin 446-701, Korea
gogohhcom@khu.ac.kr

BeomSeok Kim
 Dept. of Computer Engineering

Kyung Hee University
Yongin 446-701, Korea
Passion0822@khu.ac.kr

Jinsung Cho
Dept. of Computer Engineering

Kyung Hee University
Yongin 446-701, Korea

chojs@khu.ac.kr

Abstract—Due to rapid development of embedded system
technologies, miniaturization of low-power sensor nodes becomes
possible. Based on these improvements of sensor nodes, several
sensor applications can run on a single sensor hardware and all
of the applications in sensor network should be guaranteed the
real-time requirements and independence. To satisfy these
requirements, the virtualization concept was proposed. However,
the virtualization cannot be applied to sensor nodes because it
requires powerful computing resources. To solve this problem,
the partitioning scheme which is categorized into temporal
partitioning and spatial partitioning has been proposed. In this
paper, we design and implement temporal partitioning scheme
for sensor nodes and validate that our implementation
guarantees minimum execution time of each partition.

Keywords—Sensor network; Virtualization; Partitioning;
Scheduling; Threads

I. INTRODUCTION

In last few years, embedded system is dramatically
developed and it is used in various areas such as airplane, air
conditioner, television, and sensors. Especially, development
of sensor devices makes it possible that sensor network is used
in various area such as military, u-healthcare, and monitoring
system.

In general, a single application runs on a single hardware
because sensor nodes have limited hardware resources. In
recent years, however, sensor devices are developed rapidly
and it makes possible that various applications run on a single
sensor device. Based on these improvements of sensor nodes,
many sensor applications can run on a single sensor hardware,
and all the sensor applications should provide the reliability
and independence at the same time. For example, airplane
system should operate properly because the whole airplane
system may cause serious problems if one of applications
makes error.

To guarantee these requirements, the virtualization scheme
has been proposed. The virtualization supports various OS
(Operating System) on each virtual machine in a single
hardware. However, the virtualization scheme requires

powerful computing resources. As mentioned above, sensor
nodes have limited resources and it is not suitable that we
directly apply virtual machine to sensor nodes. To handle this
problem, the partitioning scheme has been proposed. The
partitioning scheme consists of two parts: temporal partitioning
and spatial partitioning [1]. Temporal partitioning divides the
time resources of all applications and guarantee the minimum
execution time. Contrastively, spatial partitioning divides
physical memory of applications and it protects memory space
of each application using memory protection of CPU. While
the partitioning scheme is similar to concept of virtualization, it
requires lower hardware resources than virtualization. However,
existing spatial partitioning is difficult to adapt to sensor nodes
because most CPUs on sensor nodes does not support memory
protection.

In this paper, we design the partitioning architecture that
guarantee minimum execution time using temporal partitioning
with a limited performance of hardware and implement the
partitioning on KHIX using ATmega128.

The rest of the paper is organized as follows: Section 2
discusses background and existing studies of partitioning
scheme. In Section 3, we describe the architecture of
partitioning and its performance is evaluated via
implementation in Section 4. Finally, Section 5 concludes this
paper.

II. BACKGROUND

A. Virtualization
Virtualization provides independence of each virtual

machine. Figure 1 illustrates concept of virtualization. The
virtualization can be categorized into two schemes: full-
virtualization and para-virtualization. Full-virtualization has
several virtual machines which have different guest OS that
does not need to modify. It should be provided virtualization
function of CPU. Therefore, guest OS requests to control the
hardware to CPU and the CPU delivers the request to
hypervisor which can control the hardware. The strength of
full-virtualization is that guest OS does not need to change. On

126978-1-4799-3689-2/14/$31.00 ©2014 IEEE ICOIN 2014

the other hand, guest OS of para-virtualization requests to
control the hardware to hypervisor directly. Therefore, para-
virtualization which should modify its guest OSs can provide
higher performance than full-virtualization. Meanwhile, these
virtualization schemes are available on hardware based on
excellent performance.

Fig. 1. Concept of virtualization

B. Partitioning
While partitioning scheme is similar to virtualization

scheme, it provides independent spaces of several applications
that are divided into each partition with lower computing
resources than virtualization. Therefore, partitioning scheme is
more suitable than virtualization to apply sensor network.
Partitioning scheme can be categorized into two schemes:
temporal partitioning and spatial partitioning. Spatial
partitioning means that physical memory of one partition is not
affected by the other partitions. On the other hand, temporal
partitioning means that each process is allocated time resource
to guarantee independence. Figure 2 represents the partitioning
scheme. This partitioning scheme operates on a single
hardware like as a lot of independent hardware. This scheme is
used for embedded system such as car and airplane system
based on ARINC 653 standard [2].

Fig. 2. Partitioning scheme

C. ARINC 653
Avionics system consists of various kind of electronic

systems that perform the different work. These electronic
systems are integrated into IMA (Integrated Modular
Avionics). IMA is performed on a single computing
environment because electronic equipment is very heavy
weight and variety. In this situation, reliability of each
applications and independence are very important. To
guarantee this problem, ARINC 653 standard that define the

partitioning scheme in avionics system was proposed [2-4].
ARINC 653 standard was written not only partitioning scheme
but also whole avionic systems.

D. KHIX
KHIX (OS developed by Kyung-Hee University) is the OS

that can provide the extension and reconfiguration. And it is
medical sensor OS providing API based on POSIX [5].
Embedded system of sensor network needs the composition
which is suitable to purpose because of many limitations that
are CPU performance, memory and consumption of electronic
power. Figure 3 shows a block diagram of KHIX. Each
function allows easy extension by making component and
easy transplant the other process through HAL (Hardware
Abstract Lager). Also it allows to develop the program which
easily provides the API based on POSIX.

Fig. 3. Architecture of KHIX

E. ATmega128
We design the partitioning scheme in the sensor network.

Sensor network requires small capacity of hardware and high-
speed microcontroller. The ATmega128 fulfills these
requirements. The ATmega128 is manufactured by using
ATmel’s high-density nonvolatile memory and provide up to
16 MIPS throughput at 16MHz and on-chip 2-cycle multiplier.
The device has UART0 and UART1 communication ports for
serial communication under UART environment and uses
USB ISP cable in order to download programs to the
ATmega128 processor. The device has 128kbytes of Flash,
4kbytes SRAM. And it is supported with C compilers [6-7].

F. Related works
To provide performance of integrated system and reliability

on sensor nodes, independence of each application that runs on
a single hardware has become more important. For this reason,
there exist studies to guarantee requirements of sensor nodes.

In recent years, study of vehicle mounted infotainment
system which simultaneously operates multiple applications
tries to apply virtualization and partitioning scheme to provide
independence of each application that executes on a single
vehicle. The authors of [8] proposed the partitioning scheme
that consists of two non-virtual partitions and single virtual
partition. They suggest the performance evaluation using
various platforms that run on the each partition on a single

127

hardware. In the result, they verify that overload of one
partition does not affect the other partition.

COS (Core OS of DECOS project) has the partitioning
scheme that consists of temporal partitioning and spatial
partitioning [9]. Temporal partitioning has two-level
scheduling. First level scheduling divides the several time slots
and it allocate the partitions. When system is divided into
several partitions, allocate the fixed scheduling with pre-
defined weight. Second level scheduling that does dynamic
scheduling with workload of each partition is event or event
handler of each partition. Spatial partitioning is to provide
memory protection through the MMU (Memory Management
Unit) which control the CPU to access the memory. They
propose this partitioning scheme that each partition uses the
divided resources.

Temperature-aware partitioning embedded system was also
proposed. High temperature negatively affects reliability as
well the costs of cooling and packaging [10]. This system is
divided into two partitions that consist of “cool” task and “hot”
task. If “hot” tasks are executed consecutively, the system is
negatively affected. Therefore, the system always checks the
temperature of board. Then the partition scheduler dynamically
determines the executing partition. Experimental results show
that task partitioning algorithms can effectively reduce the peak
temperature.

 These studies assume that they developed with powerful
computing resources. However, sensor nodes in sensor
network have limited hardware resources and it cannot be
applied existing partitioning schemes. To handle this problem,
we design the partitioning scheme on the sensor OS which
operates on sensor node with ATmega128 that has limited
performance of hardware.

III. DESIGN OF PARTITIONING ON KHIX

Since general purposed sensor nodes do not have capacity
of memory protection, spatial partitioning cannot work on
sensor nodes. Therefore, we design partitioning which provides
only temporal partitioning based on pure software side.
Proposed partitioning is developed on KHIX.

A. Temporal partitioning
Temporal partitioning requires that it does not affect CPU

usage (process resource) of each divided partition. In this paper,
we design the independent scheduling scheme of each partition.

Fig. 4. KHIX without temporal partitioning

As shown in Figure 4, KHIX system has various
applications on a single node with non-temporal partitioning.
Each application has several threads and they have different
weight. KHIX system uses the priority-based RR (Round
Robin) scheduler which fairly schedules by priority of threads.
If a thread has the highest priority and many workloads, it may
monopolize the usage of CPU. To solve this problem, we
propose partitioning scheme that several threads in divided
partition are performed independently. In addition, we design
the temporal partitioning using integrated management
partition scheduler to guarantee minimum execution time of
each application.

 Figure 5 shows KHIX with proposed temporal partitioning
and integrated management partition scheduler. Each partition
has different scheduler and consists of several threads. Each
partition is allocated the fixed weight by user, and the partition
scheduler divides the time resources depending on weight of
partition. By this design of proposed scheme, it can prevent
monopoly of CPU and guarantee minimum execution time of
each partition(application).

Fig. 5. KHIX with proposal temporal partitioning

B. Partition
 One partition consists of several threads. When system is
started, the weight of each partition is allocated by user, and
scheduling is decided with requirement of partition. Each
partition doesn’t affect to the other partition. therefore error of
one partition doesn’t affect the whole system. For example,
Figure 5 shows KHIX with proposed temporal partitioning. In
case of the partition 1, it uses RR scheduler which fairly
allocates the time resources and partition 2 uses EDF (Earliest
Deadline First) scheduler which needs to guarantee the dead
line of the thread in real time. Scheduler of partition 3 is
priority-based RR as mention above. These schedulers are
executed independently.

C. Partition scheduler
Kernel has partition scheduler which schedules partitions

and each partition has its own scheduler. Partition scheduler
uses the WFQ (Weight Fair Queue) scheduler that guarantees
the execution time with weight of partition. It is similar to RR
scheduler which fairly divides the execution time of threads.
However, it allocates different time resources to each partition
based on weight of partition and it is a scheduler adaptable to

128

dynamic environment. In addition, it can provide prevention of
CPU monopoly, guarantee of independence and minimum
execution time of each partition. This partition scheduler
cannot be applied to hard real time sensor network because this
scheme guarantees minimum execution time of all threads,
therefore this scheme is hard to provide deadline of all threads.

IV. IMPLEMENTATION

A. Implementation on ATmega128

Fig. 6. Zigbex-II node with ATmega128

We implemented proposed temporal partitioning scheme
using partition scheduler. Figure 6 shows Zigbex-Ⅱ node
which is infrastructure to develop proposed scheme based on
ATmega128. At the start of the system, the partition scheduler
and each scheduler initializes variables and registers alarm
signal which is periodically called every 10ms. After system
initialization time, partition scheduler allocates the time
resources to each partition based on weight of partition. Each
partition executes its member threads by using its own
scheduler. When alarm signal is called, time resource of thread
and partition is decreased. Scheduler of partition tries to find
available thread in executing partition when time of thread
become 0 and time of partition is more than 0. If it finds the
available thread, it loads thread to CPU. Otherwise, partition
scheduler change to next partition and allocates the time
resources using weight of partition. If any partition is not
available, CPU executes the idle thread. Figure 7 shows
scheduling algorithm of proposed partitioning scheme.

Algorithm on Partition scheduler

Start of partition scheduler

1. if (Thread[l].Time == 0)
2. If (AvailableThread)
3. Execute(SchedulerOfPartition)
4. end of if
5. else
6. NextPartition.Time = Time(NextPartiton.Weight)
7. Execute(NextPartition)
8. end of else
9. end of if
10.
11. if (Partition[k].Time == 0)
12. NextPartition.Time = Time(NextPartiton.Weight)
13. Execute(NextPartition)
14. end of if

Fig. 7. Pseudo code of Partition scheduler.

B. Validation of partitioning
We perform experiment which verifies the guaranteeing

minimum execution time using temporal partitioning. The
experiment was proceeded during 1sec (1000ms) and time
quantum of OS is 20ms. Detail environment of experiment is
shown in Table 1.

In experiment, five threads have different priority such as
High, Middle, and Low. These priorities and usage of CPU can
be modified by users, and we set the data as shown Table I. We
compare the performance of KHIX with proposed scheme with
KHIX with priority-based RR scheduler. The experiment
validates that guarantee the minimum execution time when
error occur.

TABLE I. Experiment environment

Application
(Partition)

Thread
No.

Priority of
thread

CPU usage
(weight)

Application 1
(Partition 1)

Thread 1 High
30 %

Thread 2 Low

Application 2
(Partition 2)

Thread 3 Middle
30 %

Thread 4 High

Application 3
(Partition 3) Thread 5 Low 20 %

 Figure 8 is results of experiment on KHIX using priority
RR. All threads take the time resources of 80% usage of CPU.
We assume that the thread 3 occurs the infinite loop error and
the thread 1 and the thread 4 have higher priority than thread 3.
Therefore, the thread 1 and 4 do not affected by error of the
threads 3. However, the thread 2 and the thread 5 have lower
priority than the thread 3. It cause problem with minimum
execution time of threads because infinite loop error always
make state of thread 3 ‘Ready’ or ‘Execute’. As the result,
threads which have lower priority than the thread 3 cannot
guarantee the minimum execution time.

Fig. 8. Execution time of threads using priority R.R

129

Fig. 9. Execution time of threads using partitioning

 Figure 9 illustrates result of execution time on KHIX with
proposed temporal partitioning scheme. As shown the result of
non-error environment, all threads are fairly distributed.
Meanwhile, thread 2 and thread 5 which have lower priority
than thread 3 are guaranteed the minimum execution time
when thread 3 occurs error. The thread 3 executes during about
180ms which is longer than thread 3 of non-error environment
because the thread 3 additionally use 20% of CPU resource
when thread 3 has infinite loop error. As the result, proposed
temporal partitioning scheme can guarantee the minimum
execution time of each thread.

C. Efficiency of partition scheduler
The partitioning scheme is developed on the KHIX system.

In sensor network which has limited resources of sensor nodes,
code size is very important. The size of KHIX system using
priority-based RR scheduler is 2,057 bytes which takes 50.2%
of SRAM and 5,498 bytes which takes 4.2% of flash memory.
Similarly, the size of KHIX system with proposed temporal
partitioning scheme is 2,390 bytes which takes 58.3% of
SRAM and 7,918 bytes which takes 6.0% of flash memory.
This result means that the proposed temporal partitioning
scheme has capacity of multi-application execution and it is
useful to apply sensor network to real world.

V. CONCLUSION

In this paper, we propose the temporal partitioning scheme
to prevent the CPU monopoly, guarantee of independence and
minimum execution time of each partition. To validate
performance of proposed scheme, we also implement
proposed scheme on ATmega128 board and measure
execution time of each thread. Results of experiment shows
that proposed scheme can guarantee minimum execution time
of all thread in the system. Moreover, system which is applied
proposed scheme has low capacity and it can be used in
general purposed sensor nodes. As a result, proposed
partitioning system is suitable to sensor network in real world.

REFERENCES

[1] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber,
“A Comparison of Partitioning Operating System for Integrated
Systems,” In Proc of SAFECOMP, pp. 342-355, 2007.

[2] S. H.VanderLeest, “ARINC 653 HYPERVISOR,”
In Proc of Digital Avionics Systems Conference, pp. 5.E.2-1 – 5.E.2-20,
2010

[3] S. Han, H. Jin, “Virtualization-based ARINC 653 Partitioning for
Avionics Software,” In Proc of KCC, 2011

[4] S. Han, H. Jin, “Kernel-Level ARINC 653 Partitioning for Linux,” In
Proc of ACM Symposium on Applied Computing, pp. 1632-1637, 2012

[5] Y. Baek, J. Cho “KHIX : A Scalable and Reconfigurable Embedded
System Operating” in KCC, 2007

[6] M. Kang, S. Chom, J. Kim, U. Chong, “Implementation of Non-Stringed
Guitar Using ATMEGA128,” In Proc of IFOST, pp. 585-588, Oct. 2007

[7] X. K. Pham, D. Q. A. Vo, N. H. Nguyen, T. P. Cao, “PID-Neural
Controller based on AVR Atmega 128,” In Proc of ICARCV, pp 1573-
1576, Dec. 2008.

[8] S. Han, J. Seok, H. Jin, “A Partitioning Scheduling Scheme to Support
Efficient Mixed Partitoning,” In Proc of KIISE, 2013

[9] J. Craveiro, J. Rufino, F. Singhoff
“Architecture, Mechanisms and Scheduling Analysis Tool for Multicore
Time-and Space-Partitioned Systems,” In Proc of ACM SIGBED
Review. Vol. 8, No. 3, pp 23-27, Sep. 2011

[10] Z. Wang, S. Ranka, P. Mischra, “Temperature-aware Task Partitioning
for Real-Time Scheduling in Embedded Systems,”, In Proc of VLSID,
DOI = 10.1109/VLSID.2012.64

130

