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Abstract. Video can be encoded into multiple-resolution format in nature. A multi-resolution or scalable video
stream is a video sequence encoded such that subsets of the full resolution video bit stream can be decoded to
recreate lower resolution video streams. Employing scalable video enables a video server to provide multiple
resolution services for a variety of clients with different decoding capabilities and network bandwidths connected
to the server. The inherent advantages of the multi-resolution video server include: heterogeneous client support,
storage efficiency, adaptable service, and interactive operations support.

For designing a video server, several issues should be dealt with under a unified framework including data
placement/retrieval, buffer management, and admission control schemes for deterministic service guarantee. In
this paper, we present a general framework for designing a large-scale multi-resolution video server. First, we
propose a general multi-resolution video stream model which can be implemented by various scalable compression
techniques. Second, given the proposed stream model, we devise a hybrid data placement scheme to store scalable
video data across disks in the server. The scheme exploits both concurrency and parallelism offered by striping
data across the disks and achieves the disk load balancing during any resolution video service. Next, the retrieval
of multi-resolution video is described. The deterministic access property of the placement scheme permits the
retrieval scheduling to be performed on each disk independently and to support interactive operations (e.g. pause,
resume, slow playback, fastforward and rewind) simply by reconstructing the input parameters to the scheduler.
We also present an efficient admission control algorithm which precisely estimates the actual disk workload for
the given resolution services and hence permits the buffer requirement to be much smaller. The proposed schemes
are verified through detailed simulation and implementation.
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1. Introduction

During the past decade we paid great attention to a video-on-demand (VOD) service which
provides the combined facilities of a video rental store over high-speed networks. The re-
alization of such services requires the development of VOD servers that support efficient
mechanisms for storing and delivering video streams. The fundamental problem in devel-
oping video servers1 is that the delivery and playback of video streams must be performed
at real-time rate [16]. A great deal of work has been done on video servers with the research
issues: guaranteed retrieval and delivery of video streams [1, 35], disk scheduling algorithms
for improving disk performance [8, 28], data placement on a single disk or multiple disks for
high throughput of storage subsystems [2, 33, 36], variable bit rate stream scheduling and
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admission control for the deterministic/statistical QoS guarantee [24, 29, 34], efficient buffer
management and caching [13, 25, 37], interactive operations support [7, 9, 38], hierarchical
storage management for cost-effective design [15, 21], and scalable server architecture and
scheduling algorithms in parallel or distributed environment [4, 12, 17, 22]. The issues,
however, are closely coupled with each other.

Recent advances in video coding technology make it possible to create a multi-resolution
or scalable video stream. In general, a multi-resolution video stream permits the extraction of
lower resolution subsets from the full resolution stream that may be decoded independently.
Employing the multi-resolution video in VOD servers provides the following benefits: het-
erogeneous client support, storage efficiency, adaptable service, and interactive operations
support.

First, clients in a VOD service are likely to request various QoS parameters, such as
color depth, window size, and frame rate, because they have different decoding capabilities
and network bandwidths connected to the server. Second, servicing single (full) resolution
video streams for a wide range of clients results in wasting server resources such as disk
and network bandwidths. Since multiple versions with different resolutions for each video
stream lead to storage inefficiency, it is required to employ scalable video. Third, on the
transient overloaded condition, the server is able to provide adaptable services by gracefully
degrading the resolution levels. Furthermore, even when the admission of new clients fails,
the storage of scalable video permits the server to gracefully degrade the resolution levels of
existing clients in order to service new clients. In addition, the server can provide adaptability
to the fluctuation in network bandwidth, which is one of fundamental problems in mobile
computing environment. Finally, the lower resolution streams enable the server to efficiently
support interactive operations such as fastforward and rewind.

There exist several works related to multi-resolution video servers whose research is-
sues include multi-resolution video model, data placement and retrieval of video data, and
interactive operations support. Chiueh and Katz [11] employ the specific multi-resolution
video representation coded in a Laplacian or Gaussian pyramid and lay out video data on
a two-dimensional disk array. The result of a simulation study shows that under synthetic
workload the multi-resolution scheme performs significantly better in terms of I/O rate,
average waiting time, and average physical data bandwidth requirement as compared with
full-rate single resolution video. Keeton and Katz [19] propose several strategies for the
layout of multi-resolution video data. Each of their strategies explores different aspects
of the parallelism and concurrency offered by striping data across multiple disks. They
evaluate their layout strategies through simulation in a standard file server environment.
Chang and Zakhor [5, 6] present a constant frame grouping method to order data rate lay-
ers within one storage unit on a disk and a periodic interleaving method to arrange the
storage unit on multiple disks. Paek et al. [26] explore a flexible data placement strategy
for independent parallel disk arrays. The placement strategy integrates both schemes of
[19] and [5] into a multiple segmentation scheme and hence provides a trade-off between
disk utilization efficiency and interactive delay. Chen et al. [10] suggest an idea of stag-
gering scalable data blocks in order to achieve better load balancing and reduce buffer
requirements. Shenoy and Vin [31] present an encoding technique for MPEG video using a
combination of temporal and frequency scaling to support interactive scan operations. They
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demonstrate that the lowest resolution stream provides acceptable visual quality for scan
operations.

However, there has been little work integrating all of the research issues which may
include data placement/retrieval, buffer management, interactive operations support, and
admission control schemes for deterministic service guarantee. In addition, many of the
previous works assume the specific video stream such as MPEG and the server architecture.
In this paper, we intend to present a general design framework by proposing and assuming
the general video stream model and server model. Under the given model, we deal with the
individual issues in a unified manner.

First of all, we propose a general multi-resolution video stream model which can be
implemented by various scalable compression techniques. Next, under the scalable disk-
array-based server model, we devise a hybrid data placement scheme which exploits both
concurrency and parallelism offered by striping data across disks in the server and propose
the request scheduling which determines the start point of each service to minimize the
maximum number of blocks retrieved in a disk. The placement scheme with the request
scheduling is shown to evenly distribute the disk workload, so that it increases the con-
current clients, since the most heavily loaded disks determines the maximum number of
concurrent clients. Furthermore, the deterministic access property of the data placement
scheme permits that the retrieval scheduling can be performed on each disk independently
and that the admission control algorithm can precisely estimates the actual disk work-
load. The precise admission control algorithm makes the buffer requirement much smaller.
The simple retrieval scheduler with the multi-resolution video stream can support inter-
active operations just by reconstructing the input parameters without any additional disk
workload.

The rest of the paper is organized as follows: In Section 2, we describe the video stream
model and the server model. Sections 3 and 4 present the data placement and retrieval scheme
for multi-resolution video, respectively. Data placement and retrieval are closely coupled
with each other. In Section 4, we also describe how to support interactive operations given
the data placement and retrieval, and propose the admission control algorithm. In Section 5,
we validate the proposed schemes through the detailed simulation with scalable video trace
data and implement a small-scale prototype for the multi-resolution VOD system. Finally,
Section 6 concludes the paper.

2. The model

2.1. Multi-resolution video stream model

In general the notion of video resolution is defined in three dimensions: chroma, spatial, and
temporal. In these dimensions, video streams can be compressed into multiple-resolution
format by various scalable compression algorithms. A multi-resolution or scalable video
stream is a video sequence encoded such that subsets of the full resolution video bit stream
can be decoded to recreate lower resolution video streams.

For the purpose of modeling multi-resolution video streams, we propose a z-level multi-
resolution video stream model in figure 1. A multi-resolution video stream is a set of
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Figure 1. z-level multi-resolution video stream model.

segments in which a segment consists of z components. In other words, for a video
stream V ,

V = {Ss | Ss is a segment, 0 ≤ s < l}
Ss = {

Cs
c

∣∣ Cs
c is a component, 0 ≤ c < z

}
,

where s and c denote the segment number and the component number, respectively, and
l is the number of segments, or the length of V . The k-level resolution can be obtained
by integrating k components from the lowest one; so, {Cs

c | 0 ≤ s < l, 0 ≤ c < k} are
serviced. In our multi-resolution video model, each video stream can be provided with z
levels of quality and the QoS parameter is represented by the number of components in a
segment, or k. Full resolution quality dictates the use of all the components.

The multi-resolution video stream described above can be implemented by various cod-
ing technologies. The current scalable video compression techniques include DCT-based
schemes, subband (wavelet) schemes, fractal-based schemes, and object-based schemes
[18]. Of the standard codecs, only MPEG-2 addresses scalable video streams. Four tech-
niques, namely data partitioning, SNR scalability, spatial scalability, and temporal scala-
bility, can be used. Since a frame consists of multiple layers, a frame can be mapped to
a segment in our video stream model and the sub-layers of the frame constitute compo-
nents of the segment. Alternatively, multiple frames may be mapped to a segment because
a large storage/retrieval unit is beneficial to the disk performance [6]. For example, Paek
et al. implement a three layer MPEG-2 video stream in [26]. In their scheme, the base layer
provides the initial resolution video while an additional spatial enhancement layer allows
for the upsampling and hence increases in frame size of the base layer. A further SNR
enhancement layer provides increase in the visual quality of the base + spatial enhance-
ment layers of video. One possible mapping from their video stream to our model is that a
group-of-picture (GOP) corresponds to a segment, that is,

V = {Ss | Ss = GOPs, 0 ≤ s < l}
Ss = {

Cs
c

∣∣ Cs
c = GOPs

c, 0 ≤ c < 3
}
,

where GOPs denotes the s-th GOP. The components GOPs
0, GOPs

1, and GOPs
2 are the base

layer, the spatial enhancement layer, and the SNR enhancement layer for GOPs , respectively.
MPEG-1, which is another DCT-based coding scheme, can also exploit scalability tech-

niques such as data partitioning with slight modification to the existing codecs [30]. In
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addition, without modifying the codecs, we can reconstruct MPEG-1 video into our multi-
resolution video model in temporal dimension as follows: (1) A GOP is mapped to a segment.
(2) An I frame is the first component in a segment. (3) P frames constitute the next one or
more components. (4) B frames constitute the rest of the components in the segment. This
is similar to the rearrangement scheme of Chang and Zakhor [5] which stores the frames
within a GOP in a specific order.

Taubman and Zakhor [32] propose and implement a scalable codec capable of generating
bit rates from tens of kilo bits to several mega bits per second with fine granularity of available
bit rates. The codec is based on 3-D subband coding and multi-rate quantization of subband
coefficients, followed by arithmetic coding. Chang and Zakhor [6] use 11-layer scalable
video streams produced by the codec which range from 190 Kbps and 1330 Kbps in their
work for storage and retrieval of scalable video. We can reconstruct the video streams into
our video model in the same way as the scalable MPEG-2 which is described above.

Bogdan [3] proposes a multi-scale fractal video coding. The scheme combines the still
image pyramid coding and the ITT (iterated transformation theory) inter-frame video coding
methods to generate a hierarchy of bit-streams. MPEG-4 is scalable in the sense that multiple
objects can be added or removed to compose a frame. The fractal-based and object-based
coding schemes are also consistent with our model. Consequently, we can conclude that
we can utilize ‘off-the-shelf’ technology in order to implement our multi-resolution video
stream model.

2.2. Server model

Video servers range from a standard PC for small-scale systems to massively parallel or
distributed computers for large-scale systems, as depicted in figure 2. Since the most de-
manding resources in video servers are I/O (disk and network) bandwidth and storage, the
single server model adopts disk arrays for large bandwidth and storage capacity [2, 36].
However, the single server approach has its limitations of scalability and fault tolerance [22].
In order to overcome the limitations, distributed or parallel servers have been designed and
implemented [4, 12, 17, 22]. The striping techniques in disk arrays can be incorporated into

Figure 2. The video server architecture.
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the distributed/parallel server model for high aggregated throughput and load balancing
among nodes which comprise the server. In addition, each node in distributed or parallel
servers should have high-performance and reliable disk subsystems such as RAID.

The architecture in figure 2 can be modeled into a disk array model where the server has
d disks2 and video data are striped across the disks. In distributed or parallel servers, a disk
corresponds to a disk subsystem of each node. In this paper, we assume the disk array model
for our video server architecture and consider the large-scale case (distributed or parallel
server) for system parameters. Many works are also founded on the model but most of them
analyze the performance of a disk (i.e. seek time, rotational latency, and transfer rate) based
on single server architecture in figure 2(a). The analysis is not directly applicable to the RAID
disk subsystem in distributed or parallel servers. For flexibility, we consider only the effective
bandwidth � for the performance of a disk subsystem. The value can be measured from a
calibration program that determines the maximum number of blocks that can be read within
the given time interval [24]. For convenience’s sake, we use term ‘disk’ instead of ‘disk
subsystem’ in the rest of this paper. In general, the bandwidth of interconnection network
between nodes in large-scale servers is larger than that of disk subsystem. So, we generalize
the server model where the server has d disks of which the effective bandwidth is �.

A video server proceeds in periodic rounds due to its periodic nature. In each service
round of which the length is TR , a video server retrieves the required amount of data with
respect to its playback duration and transmits them to remote clients. A double buffer scheme
enables the disk and network bandwidths to be effectively utilized. In other words, in each
round, while data are retrieved to maximize the disk performance, the data retrieved in
the previous round are transmitted to ensure the real-time playback capability considering
the buffer space of each client. Assuming that the network bandwidth is large enough
for the transmission, we are concerned about the effective disk bandwidth management for
multi-resolution video data. For effectiveness, we define the performance metrics of video
servers as concurrency, interactivity cost, and service latency. Video servers should be able
to provide services for as many concurrent clients as possible while guaranteeing their
real-time playback. In addition, interactive operations such as pause, resume, fastforward,
rewind, and slow playback, should be supported with reasonable cost. The service latency
upon startup or interactive operations should be acceptable.

3. Data placement for multi-resolution video

The performance of video servers is closely related with data placement. A data place-
ment scheme should explore the followings: First, it should provide deterministic access
for simple retrieval scheduling. Second, the performance efficiency should be considered
such as throughput and service latency. Third, it should support interactive operations with
reasonable cost. Next, the disk load balancing should be achieved so that the server may be
able to fully utilize the aggregate disk bandwidth.

Before placing data on disks, we first have to determine storage units by which data are
written to or read from disk. Constant bit rate (CBR) video streams require the equal amount
of data in each round, but variable bit rate (VBR) streams do not. There exist two methods
for VBR streams [6]. The constant time length (CTL) method is to store and retrieve video
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data in unequal amounts with respect to its real-time playback duration. In contrast, the
constant data length (CDL) is to store and retrieve data in equal-sized blocks while utilizing
buffer memory to provide real-time playback. The former provides advantages in buffer
usage and disk throughput but has the fragmentation problem. The latter is consistent with
the current disk storage technology but requires large buffer space and complicated retrieval
scheduling. In order to alleviate the problems, we can employ a hybrid method in which
data are stored in fixed-size blocks, but the number of blocks to be retrieved varies with the
playback duration. The CTL method is more efficient in a read-only environment such as
VOD because it reads a large chunk of data contiguously while there exist seek operations
in the hybrid method [6]. On the other hand, the hybrid method is a viable approach for the
design of integrated multimedia file system where multimedia data are created, edited, and
deleted frequently [36].

We model the hybrid approach in consideration of flexibility and allocate a variable
number of fixed-size blocks for a component, that is, size(Cs

c ) = bs
c B, where B denotes the

size of a disk block. However, if we choose the smallest allocation unit for B (one sector, or
512 bytes) and place blocks in a component contiguously, it results in the CTL scheme. As
for the component size size(Cs

c ) in our multi-resolution video stream model, we construct
a segment based on the round length TR , so that a segment is serviced in each round. This
leads to a large and logically contiguous data chunks, and hence, the high disk throughput
can be achieved.

We now intend to place multi-resolution video data on a disk array. There exist two
straightforward strategies which explore different aspects of the concurrency and parallelism
offered by striping data across disks, as depicted in figure 3. The degree of concurrency is
defined as the number of outstanding requests at one time and the parallelism describes the
number of disks that service a single request. Chang and Zakhor [5] propose the periodic
interleaving scheme using the concurrency of multiple disks and Paek et al. [26] define the
second strategy (parallelism) as the balanced placement scheme. The periodic interleaving
scheme accesses only one disk in a round for a segment and, in the balanced placement, a
segment is divided into d equal amount of data and placed across all d disks.

Two extremes of data placement show a tradeoff of disk throughput versus service latency.
The periodic interleaving scheme achieves high disk throughput owing to the large and

Figure 3. Striping strategies: concurrency vs. parallelism.
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logically contiguous data chunks, but the worst case service latency is d rounds [26] because
a service should be delayed considering the load balancing of disk bandwidth. The service
delay consists of the waiting time plus one round for filling a buffer in the double buffer
system. On the contrary, in the balanced placement, Paek et al. argue that the service
latency is one round all the time although relatively small data chunks result in lower disk
throughput. They also present a hybrid multiple segmentation scheme on the basis of the
tradeoff analysis. In the scheme, they define a segmentation level S which represents the
degree of parallelism. Each segmentation group (S disks) is performed in parallel and d/S
disks concurrently.

All the schemes are based on full-resolution services. For lower resolution services, a
small quantity of data are retrieved in the periodic interleaving and a subset of disks partic-
ipate in the retrieval in the balanced placement scheme. Hence, both schemes cannot guar-
antee their advantage (i.e. throughput and service delay, respectively) for lower resolution
services. In addition, they do not consider the disk access boundaries for each component
so that each component in a segment is not accessible independently. Furthermore, the load
balancing issue of disk bandwidth for VBR streams is not described.

To take advantage of both concurrency and parallelism for each resolution service, we
place each segment of a video stream in parallel and each component in a segment con-
currently. In other words, since the independent access unit is a component, we place each
component contiguously in a disk and stripe the components in a segment across disks. The
finer storage granularity provides the advantages over the periodic interleaving scheme:
better load balancing and less disk bandwidth fragmentation. Disk bandwidth fragmenta-
tion refers to a situation where the available bandwidth in each disk is not sufficient to
accommodate an incoming request, although there is sufficient aggregate bandwidth across
disks in the array [10]. On the other hand, the proposed placement scheme guarantees the
sequential and independent access to each component, which the balanced scheme does
not provide. The balanced scheme incurs the load imbalance problem on lower resolution
services because the lower resolution components are placed on the same disk (see figure 3).

We begin by introducing an example of data placement in figure 4. Three cases are
identified according to the resolution level of stream z and the number of disks d. First, in
case of z ≤ d , components in a segment are distributed across all the disks and successive

Figure 4. An example of data placement for multi-resolution video.
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components are placed on adjacent disks.3 Next, for load balancing, the first components of
successive segments Si and Si+1 (i.e., Ci

0 and Ci+1
0 ) are assigned on adjacent disks (disk j and

disk j + 1), as shown in figure 4(a) and (b). In addition, we distribute the starting point (the
first component in the first segment, or C0

0 ) of each stream across disks for load balancing
when multiple streams are requested concurrently. For the service of V1 in figure 4(a) with
the second level resolution, for example, the first segment is retrieved from disks 0 and
1 (C0

0 and C0
1 , respectively) and the second from disks 1 and 2 (C1

0 and C1
1 ). Next, when

z > d , multiple components in a segment may be placed on a disk. However, the strategy
is similar to the case of z ≤ d . That is, successive components in a segment are placed on
adjacent disks and the first components of successive segments are assigned on consecutive
disks as depicted in figure 4(c). The data placement scheme allows deterministic access to
disks. For V = {Cs

c | 0 ≤ s < l, 0 ≤ c < z}, the disk which contains a component Cs
c is

identified as follows4:

D
(
Cs

c

) = [s + c + StartDiskV ]d , (1)

where StartDiskV indicates the disk in which the starting point (C0
0 ) of V is stored.

We now show the disk load balancing property of our placement scheme. Since the
number of concurrent clients in a video server with multiple disks depends on the most
heavily loaded disks [36], this property should be examined carefully. Let Vi,k denote a set
of components retrieved from disk i during k-level service of V . From Eq. (1), we obtain

Vi,k = {
Cs

c

∣∣ D
(
Cs

c

) = i, 0 ≤ s < l, 0 ≤ c < k
}
. (2)

Theorem 1. Given the parameters above, |Vi,k | is computed as follows:

|Vi,k | =
⌊

l

d

⌋
× k + α (0 ≤ α < d) (3)

Proof: See Appendix B.

Theorem 1 indicates that, regardless of the resolution level of video service, components
are evenly distributed across all the disks. Disk load balancing in CBR video streams can
be directly derived from Theorem 1 because CBR streams have equal-sized components of
size(Cs

c ) = bB, 0 ≤ s < l, 0 ≤ c < z.
When a VBR scalable coding algorithm is employed for compression efficiency, the size

of each component varies, that is, size(Cs
c ) = bs

c B is not constant. This may lead to the load
imbalance. In [31], Shenoy and Vin suggest a hybrid scheme for determining the block size
in which the block size can vary across sub-streams (lower resolution streams) but is fixed
for a given sub-stream to maximize performance. Their data placement strategy, however,
stores blocks of sub-streams that are likely to be accessed together adjacent to each other
on disk and hence results in the concurrency model in figure 3(a). The variable size of
components in VBR streams can be solved in our multi-resolution video stream model by
fixing the number of blocks in the same component level, or bs

c = bc, 0 ≤ s < l. n(Vi,k), or
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the number of blocks for storing components in Vi,k , is calculated from Eq. (3).

n(Vi,k) =
∑

s

∑
c Cs

c ∈Vi,k

bs
c =

k−1∑
c=0

( ∑
s,Cs

c ∈Vi,k

bc

)
≈

k−1∑
c=0

⌊
l

d

⌋
bc (4)

From Eq. (4), we can observe that the disk workload in VBR streams is also evenly dis-
tributed for any resolution video stream. Even when bs

c varies within the same component
level, it is expected that the following equation holds statistically:

n(Vi,k) ≈
k−1∑
c=0

⌊
l

d

⌋
E[bc], (5)

where E[bc] is the mean of bs
c for 0 ≤ s < l, or E[bc] = 1

l

∑l−1
s=0 bs

c. We will validate
Eq. (5) through experiments in Section 5.

Observe that we achieve the disk load balancing for any resolution video service. How-
ever, we have to consider another load balancing issue for the workload induced by concur-
rent clients. The issue should be treated in the retrieval scheduling upon startup or interactive
operations.

4. Data retrieval for multi-resolution video

As mentioned earlier, a video data retrieval proceeds in periodic rounds. In our video server,
multi-resolution video data are constructed such that a segment is played back for TR . So,
for each video stream Vj , a segment is serviced in a round, and hence, k components
are retrieved in parallel across disks for k-level resolution service. Since our data place-
ment scheme allows deterministic access to each component, each disk can retrieve data
independently.

In figure 5, we present a simple retrieval scheduling procedure performed at disk i in each
round. The input parameters of a video stream consist of its resolution level (k j ), the current
segment number (s j ), the number of segments retrieved in a round (K j ) which is one in
normal playback, StartDiskVj , and playback direction which is set to 1 or −1 according to
forward and reverse playbacks, respectively. The scheduler generates a set of components
Di to be retrieved from its disk in each round. In Line 10 of figure 5, we can incorporate
a disk scheduling algorithm to optimize the performance of its disk subsystem. When a
client degrades its resolution level, the request can be serviced simply by changing the
input parameters to the scheduler without any additional disk workload. The service delay
of the request is only one round, or TR .

While each disk performs data retrieval independently, we have to schedule the requests
of clients globally (request scheduling), as mentioned in Section 3, so that the disk workload
induced by concurrent clients may be evenly distributed across the disks. The strategy is to
delay the start point of service considering the disk load balancing. Since the workload in
a disk is shifted to the next disk in the next round, we can calculate the average workload
in each disk for the next r rounds (r ≤ d). Our observation is that the maximum number



A DESIGN FRAMEWORK FOR MULTI-RESOLUTION VIDEO 247

Figure 5. Scheduler at disk i .

of blocks retrieved in a disk should be minimized, because the most heavily loaded disk
determines the number of clients that can be serviced simultaneously. We delay the start
point of service until the maximum number of blocks retrieved in each disk is minimized.
The worst case service latency is r rounds. The look-ahead parameter r presents a tradeoff
between disk load balancing and service latency. We assume r = d in the rest of this paper
because it is worthwhile to increase the number of concurrent clients at the expense of
acceptable service latency in VOD servers. We present an experimental result in Section 5
which shows that the number of concurrent clients increases significantly at the expense of
acceptable service latency. When multiple clients concurrently request the same video of
the same resolution, we may employ a buffer sharing policy for reduced disk workload. That
is, the scheduler assigns one video stream for the concurrent clients and later assigns new
streams for the clients requesting interactive operations. For clients with different playback
phases, we may also minimize the required disk bandwidth by exploiting sophisticated
caching mechanisms such as interval caching [14].

4.1. Support for interactive operations

Interactive operations are essential for VOD services. Clients are likely to perform VCR-like
operations on video they are watching, such as pause, resume, fastforward, rewind, and slow
playback. Fast scan operations, namely fastforward and rewind, should be treated carefully
because they require additional server resources. In general, two approaches support them:
encode separate streams and skip frames. The first approach needs extra storage space and
the second approach may lead to load balancing problems [22].

Our multi-resolution video server supports fast scan operations without any additional
overhead by degrading the resolution level and retaining the data rate of the video stream.
For example, let us assume that a fastforward operation is requested for a video stream
with the fourth level resolution. If we lower the resolution level to the second level and the
first level, the two-times-fastforward and the four-times-fastforward can be accomplished,
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respectively, without any additional disk and network bandwidth. Shenoy and Vin [31]
validate this idea by a scalable encoding technique in which the low-resolution-based sub-
stream provides acceptable video quality for scan operations. For the case of the lowest
resolution level where it is impossible to degrade the level, a segment skipping scheme [9]
can be integrated with our scheme. We choose the segment skipping approach for two
reasons. First, it can be easily integrated into our scheduling scheme simply by changing the
direction parameter. And second, segment skipping achieves storage efficiency compared
with the separate stream approach.

The scheduler in figure 5 can be updated in order to support interactive operations as fol-
lows. We assume that an interactive operation is requested to Vj = (k j , s j , K j , StartDiskVj ,

direction). All interactive operations are supported simply by reconstructing the input pa-
rameters of Vj , so that the service delay is also one round TR as similar to the re-negotiation
of resolution levels.

fastforward The new input parameters are given by V ′
j = (k ′

j , s j , K ′
j ,StartDiskVj ,direction′),

where k ′
j = k j/m, K ′

j = mK j , and direction′ = α. In this case, we can achieve m · α-
times fastforward.5 When α > 1, the segment skipping scheme is employed. For in-
stance, when four-times fastforward is requested to Vj = (4, 1000, 1, 0, 1) that is being
played back with forth-level resolution, we can obtain V ′

j = (1, 1000, 4, 0, 1). In addi-
tion, when Vj = (1, 2000, 1, 0, 1) (i.e. normal playback with first-level resolution), the
segment skipping scheme is incorporated by V ′

j = (1, 2000, 1, 0, 5) for five-times fast-
forward. As mentioned above, the segment skipping scheme leads to disk load imbalance
when α and d have the least common multiple (LCM). For example, consider a video
server having four disks in figure 4(a). For two-times fastforward of V1 = (1, 0, 1, 0, 1),
(1, 0, 1, 0, 2) is given to V ′

1. Then the server retrieves a sequence of C0
0 , C2

0 , C4
0 , C6

0 , . . .,

so that disk 0 and disk 2 will handle all the retrievals. This problem can be solved by
selecting α such that α is relatively prime to d [20].

rewind This is equivalent to fastforward with direction′ = −α.
slow playback Reducing the number of segments K j accomplishes the slow playback.

Specifically, K ′
j = K j/m for m-times slow motion. When K ′

j < 1, Vj is excluded from
the input list of the scheduler until L j ≥ 1, where L j (initially K ′

j ) is increased by K ′
j in

each round and decreased by one when L j ≥ 1.
pause and resume The scheduler excludes Vj on pause and includes Vj again on resume.

4.2. Admission control

A video server must employ an admission control algorithm to decide whether a new
client can be serviced without violating the real-time requirements of clients already being
serviced. Since a CBR video stream Vj produces a constant disk workload (n j blocks) in
each round, we can employ a simple admission control algorithm which checks if all the
blocks (

∑N
j=1 n j ) for N streams can be retrieved in a round. For VBR streams, the simple

algorithm may use either n j = max0≤i<s(ni
j ) or n j = avg0≤i<s(ni

j ), where ni
j is the number

of blocks to be retrieved in the i-th round. However, this results in either under-utilized or
over-utilized resource at the server.
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Admission control algorithms for VBR streams may be classified into two categories: sta-
tistical and deterministic. The first approach exploits the bit rate statistics of video streams
and the second approach does the specific knowledge of the bit traces of video streams. Vin
et al. [34] propose a statistical admission control algorithm with a mechanism enforcing
statistical service guarantees. They compute the overflow probability, which is the probabil-
ity that the service time for a single disk access exceeds the round duration, by statistically
determining the total number of blocks in a round and empirically measuring a distribution
function for the service time. Chang and Zakhor [6] calculate the probability of overload
by integrating the probability density function of the aggregated resource required by all
clients beyond a given threshold limit. The threshold limit is computed from a single disk
performance analysis on their data placement schemes. Makaroff et al. [24] propose a de-
terministic admission control algorithm based on the stream block schedule which contains
the number of blocks to be retrieved in each round. The admission of a new stream is
accomplished by merging the stream block schedule with the existing one and checking a
system overflow throughout the length of the service. The deterministic admission control
algorithm provides a tight and safe bound for the admission, but its complexity is relatively
high.

We now describe an admission control algorithm in our multi-resolution video server.
Assume that client j for 1 ≤ j ≤ N − 1 is being serviced with k j -level resolution of Vj

and a new client N requests VN with kN -level resolution service. Since each disk must
retrieve all the components scheduled in figure 5 every round for the deterministic service
guarantee, the following inequality must be satisfied in each disk:

n(Di ) × B ≤ TR�, 0 ≤ i < d, (6)

where n(Di ) denotes the number of blocks required to store Di . In Eq. (6), n(Di ) can be
calculated deterministically in CBR multi-resolution video streams, but n(Di ) varies from
round to round in VBR case. For VBR streams, we attempt to estimate an upper bound
nupper of n(Di ) statistically such that

Poverflow = P[n(Di ) > nupper] < ε. (7)

A new client N is admitted if the following inequality holds.

nupper × B ≤ TR� (8)

For the statistical estimation of the total number of blocks retrieved in a round for all clients,
Vin et al. use the central limit theorem and Chang and Zakhor compute the probability density
function (pdf) by the convolution of each individual pdf for a video request. They assume
that, however, all the blocks are serviced in a single disk. In a disk array environment where
data blocks are serviced across multiple disks, their approach may be incorrect. We further
describe how to estimate n(Di ) in the next section along with experiments.

The inherent feature of our multi-resolution video server enables the server to renegotiate
the service resolution level with clients failed in the admission control. The server can present
a lower resolution level which satisfies Eq. (8). Furthermore, if it is permissible to degrade
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Table 1. The average bit rate (Mbps) of each resolution level for trace data.

Resolution level 1 2 3 4/8 5/9 6/10 7/11

MPEG-1 (30fps) 0.18 0.8 1.5

MPEG-2 (24fps) 0.32 1.152 3.008

3-D subband (24fps) 0.190 0.253 0.316 0.380 0.506 0.633 0.760

0.887 1.013 1.140 1.330

the resolution level of existing clients, more clients can be serviced. Transient degradation
may be required for the rounds in which the actual number of blocks to be retrieved is
greater than nupper. If the scheduler in each disk detects the overflow, it degrades the service
level uniformly across all the clients until Eq. (8) is satisfied.

It is noteworthy that according to Eq. (8) the buffer requirement of our server is 2nupper B
per disk. This value is much smaller than that of the static policy which allocates the
worst-case fixed-size buffer to each client.

5. Experimental evaluation

In this section, we evaluate our schemes through experiments with trace data generated
from actual scalable video streams. As mentioned in Section 2.1, we consider three VBR
scalable compression techniques: MPEG-1 with temporal scalability, MPEG-2 with spatial
and SNR scalability, and 3-D subband coding scheme. Table 1 shows the average bit rate of
each resolution level for three kinds of trace data. To construct our multi-resolution video
stream, the round length TR should be determined first. The round length provides trade-off
between disk throughput and buffer requirement. The choice of optimal round length is
beyond the scope of this paper. Chang and Zakhor [6] suggest that the total system cost
is minimized at TR of one second from cost analysis and many other works assume one
second for TR [4, 34]. We also choose one second for TR .

5.1. Disk load balancing

First, we validate Eq. (5) which indicates that the disk workload for any resolution service
for a given video stream is evenly distributed across all the disks even for VBR case. Figure
6 presents the number of blocks retrieved in each disk for 30 minutes (l = 1800). The value
of the right-most bar in each graph is calculated from Eq. (5). As shown in figure 6, our
data placement scheme guarantees the disk load balancing for a video service.

Next, to explore the actual behavior of our multi-resolution video server, we have created
an event-driven simulator written in C with SMPL [23] libraries. The simulator models the
server including data placement and retrieval. Along with three types of trace data for multi-
resolution video streams in Table 1, the server is assumed to have eight disks and to store
24 video streams (eight for each type). The video streams are placed on disks according
to our data placement scheme with different starting points (StartDiskV ). We assume that
each client randomly chooses a video stream and resolution level.
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Figure 6. The distribution of disk workloads for a given resolution service.

Figure 7 presents the number of disk blocks retrieved from a disk in each round for
300 concurrent clients. For the first 30 minutes (1800 rounds), clients arrive,6 while the
services continue for the next 30 minutes. First, figure 7(a) shows the distribution of disk
workload when we adopt the concurrency model for the striping strategy in figure 3(a).
The fluctuation of workloads in each disk is very large from round to round. This occurs
because the disk workload is not evenly distributed across the disks in a given time point.
Next, the result of the hybrid data placement scheme proposed in this paper is depicted in
figure 7(b). The fluctuation of disk workload becomes smaller compared with figure 7(a).
This indicates that the proposed hybrid data placement scheme can serve more clients since
the most heavily loaded disks determine the number of concurrent clients in VOD servers.
Finally, at the expense of service latency, we schedule the start point of services to minimize
the maximum number of blocks retrieved in a disk (request scheduling in Section 4). By
delaying the start point of service, we can evenly distribute the disk workloads in each round,
so that the variation of workloads in a disk decreases significantly, as shown in figure 7(c).
It should be noted that the variation of workloads in a disk is smaller than that of the total
workloads. It is the most heavily loaded disk that determines the number of concurrent
clients. So, small variation of workloads in a disk means increased concurrency.

5.2. Admission control

In Section 4.2, we described our admission control strategy. Since the number of blocks to
be accessed at disk i in each round, or n(Di ), varies in VBR streams, we intend to estimate
an upper bound nupper from Eq. (7) for the statistical service guarantee. First, we take two
existing approaches for a single disk system: central limit theorem [34] and convolution [6].
Let a random variable n j denote the number of blocks to be accessed in each round for
client j . The total number of blocks for N clients is given by n = ∑N

j=1 n j . Using the
central limit theorem, Vin et al. [34] estimate the distribution function of n as a normal
distribution with µn = ∑N

j=1 µn j and σ 2
n = ∑N

j=1 σ 2
n j

, where µn and σ 2
n denote the mean

and the variation respectively. Chang and Zakhor [6] compute the pdf fn(x) by convolving
fn j (x) for 1 ≤ j ≤ N . When all the blocks are serviced in a single service point (i.e. disk),
both of the two approaches give the exact estimation as shown in figure 8(a).
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Figure 7. The distribution of disk workload for 300 clients.
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Figure 8. The result of estimation with existing schemes: The central limit theorem and convolution schemes
for a single disk system should be updated in a disk array environment.

In a disk array environment where data blocks are serviced across multiple disks, however,
they may not produce the proper estimation. In figure 8(b), the estimations of two approaches
show a large difference from the simulation result. Observe that the disk request pattern
for a video stream is repeated periodically with a period of d rounds. In figure 9, for
example, the first four rounds are repeated as the service proceeds. Furthermore, from the
view point of each disk, the components retrieved during d rounds contain each resolution
level, although they are not in the same segment, for instance in figure 9, {C0

0 , C3
1 , C2

2} in
disk 0 and {C1

0 , C0
1 , C3

2} in disk 1. This indicates that disk blocks for d rounds are perfectly
distributed across all the disks throughout d rounds. In addition, the request scheduling
evenly distributes the disk workloads for concurrent clients. Eventually, it is statistically
true that n j blocks are evenly distributed across d disks in each round. Thus, given a video
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Figure 9. An example of the 3rd level resolution service: The variation of the number of blocks to be accessed
at a disk during d rounds is much smaller than that of the number of blocks in each round.

stream, we can compute the mean and the variance for the number of blocks (n′
j ) to be

accessed at a disk in each round as follows:

µn′
j
= µn j /d, σ 2

n′
j
= σ 2

n j
/d. (9)

Using the central limit theorem, n(Di ) = ∑N
j=1 n′

j approaches a normal distribution

N (µ, σ 2) where µ = ∑N
j=1 µn′

j
and σ 2 = ∑N

j=1 σ 2
n′

j
. From Eq. (7), then, nupper is approxi-

mated as the smallest solution to the inequality,

∫ ∞

nupper

1

σ
√

2π
e− (x−µ)2

2σ2 dx < ε. (10)

Finally, we can admit a new client N if nupper satisfies Eq. (8). The statistics of the random
variable n j , which can be known a priori from the traces for the service of V with k-resolution
at the time the video stream is stored, is as follows:

µVk = 1

s

l−1∑
s=0

k−1∑
c=0

bs
c, σ 2

Vk
= 1

s

l−1∑
s=0

((
k−1∑
c=0

bs
c

)
− µVk

)2

(11)

We summarize the admission control algorithm in figure 10. The input parameters include
the period of service round (TR), the number of disks (d), the block size (B), the effective
disk bandwidth (�), the upper bound of overflow probability (ε), and video streams which



A DESIGN FRAMEWORK FOR MULTI-RESOLUTION VIDEO 255

Figure 10. Admission control algorithm.

clients request (Vj , 1 ≤ j ≤ N ). The algorithm determines whether the set of clients can
be serviced within the given overflow probability ε.

Figure 11 exhibits that the proposed scheme gives an accurate estimation to the actual
number of blocks required for the service. We compare nupper calculated from Eq. (10) with
the value measured from the simulation. As shown in figure 11, regardless of the number of
clients and the number of disks, our admission control strategy precisely estimate the actual
number of blocks to be accessed at a disk. This indicates that the server resources such as
disk bandwidth and buffer memory can be fully utilized. In figure 12, the effect of the request
scheduling is presented. By reducing nupper, the request scheduling enables the server to
efficiently provide services for more clients. The effect of the request scheduling becomes
larger as the number of disks increases, since the disk load balancing is more significant on a
large number of disks. The experiment result shows that the request scheduling reduces the
required bandwidth by about 9.8 Mbps per disk, but the average service latency increases
by 2.16 seconds. We believe that it is worthwhile to increase the concurrency at the expense
of acceptable service latency.

5.3. Implementation

We have implemented a prototype of multi-resolution VOD services to realize the proposed
schemes. For the quick implementation, we adopt the server architecture in figure 2(a)
and MPEG-1 video with a hardware decoder. We developed the multi-resolution video
manager as a server process in QNX real-time micro-kernel operating systems [27] on a
Pentium PC with a AHA-1540CP SCSI adapter and four Quantum 850MB SCSI disks. As
described in Section 2.1, MPEG-1 video streams are reconstructed into our multi-resolution
video model in temporal dimension. In the first prototype of the server, the QoS level is
provided with high, medium, or low. MPEG-1 video streams are parsed and separated by
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Figure 11. The result of estimation with the proposed scheme: The proposed scheme precisely estimate the
number of blocks to be accessed at a disk.

Figure 12. The effect of the request scheduling.
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Figure 13. The client window in our prototype.

the frame type, and then, a segment is made up of a GOP. A set of the same type frames
in the GOP constructs each component in a segment, for example, (I1), (P1, P2, P3, P4),
(B1, B2, B3, B4, B5, B6, B7, B8, B9, B10). By the proposed layout scheme, the reconstructed
MPEG-1 video is placed on disks. The multi-resolution video manager performs this work
and provides the retrieval service of a given resolution level. During the retrieval, when
necessary, the frame sequence is reorganized into the original sequence, so that the existing
MPEG hardware/software decoder can work.

Based on the multi-resolution video manager, a VOD system has been developed.
Figure 13 shows a window for the client program which runs on Windows95 with RealMagic
hardware decoder.7 Our prototype exhibits that the visual quality of the multi-resolution
playback and fastforward playback is acceptable. This gives us more insights into our
technique when extended to a practical environment.

6. Conclusions

A multi-resolution video server is able to provide multiple resolution services and has the
benefits of heterogeneous client support, storage efficiency, adaptable service, and inter-
active operations support. In this paper, we have presented a framework for designing a
multi-resolution video server. We proposed a general model for multi-resolution or scalable
video and described how to build the model using the current scalable video compression
techniques. Assuming a disk-array-based server model which ranges from a single com-
puter equipped with multiple disks to a distributed or parallel server comprised of multiple
nodes, we have presented the data placement and retrieval schemes.

The detailed simulation with the actual scalable video trace data have shown that the
data placement and retrieval schemes achieve the disk load balancing during any resolution
services and our admission control algorithm precisely estimate the actual disk workloads.
This indicates that the proposed schemes enable the server to fully utilize its resources.
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In addition, we have validated the proposed schemes by implementing a prototype for the
multi-resolution VOD service. Extending the prototype to a practical environment remains
to be done in the future.

Appendix A

Nomenclature

b the number of disk blocks required to store a component
B the block size of disks
Cs

c the c-th component of s-th segment
D(C) the disk which contains a component C
d the number of disks in the server
fn j (x) the probability density function of n j

K the number of segments retrieved in a round
k the requested resolution level of the multi-resolution video stream
l the length of a video stream
N the number of clients
n j a random variable that represents the number of disk blocks retrieved in a

round for client j
nupper an upper bound of

∑N
i= j n j

n(S) the number of disk blocks required to store a set S
� the effective bandwidth of a disk subsystem
RV,k the average playback rate of V with k-level resolution
r the look ahead parameter
StartDiskV the disk in which the starting point of V is stored
Ss the s-th segment of a multi-resolution video stream
size(C) the size of a component C
TR the round length
V a multi-resolution video stream
Vi,k a set of components retrieved from disk i during k-level service of a video

stream V
ε the threshold limit for the overflow probability
z the maximum resolution level of the multi-resolution video stream

Appendix B

Proof of Theorem 1: (i) z = d: Without loss of generality, we assume that StartDiskV =
0. Then, for V = {Cs

c | 0 ≤ s < l, 0 ≤ c < z}, Vi,k is given from Eqs. (1) and (2) as
follows:

Vi,k = {
Cs

c

∣∣ 0 ≤ s < l, 0 ≤ c < k, c = [i − s]d
}
. (B.1)
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Therefore, |Vi,k | is the number of s’s, 0 ≤ s < l, which satisfies

[i − s]d < k. (B.2)

Let s = x · d + y, (0 ≤ x < � l
d �, 0 ≤ y < d) and apply it to Eq. (B.2).

[i − x · d − y]d < k (B.3)

If l = m · d , for each x , 0 ≤ x < � l
d �, the number of y’s, 0 ≤ y < d, which satisfies

Eq. (B.3) is k. If l �= m ·d , for each x , 0 ≤ x < � l
d �, the number of y’s is k and for x = � l

d �,
the number of y’s is α, 0 < α < d . Hence, |Vi,k | = � l

d � × k + α (0 ≤ α < d).
(ii) z < d: This is equivalent to the case where z′ = d and k ≤ z. From the result of

case i), |Vi,k | = � l
d � × k + α (0 ≤ α < d).

(iii) z > d: From Eqs. (1) and (2),

Vi,k =
{

Cs
c

∣∣ 0 ≤ s < l, 0 ≤ c < k, c = [i − s]d + a · d, 0 ≤ a <
⌈ z

d

⌉ }
. (B.4)

If k ≤ d , this case is equivalent to case i) because each disk retrieves one component in
a segment. If k > d , each disk retrieves one or more components in a segment. From
Eq. (B.4), l · � k

d � components {Cs
c | 0 ≤ s < l, c = [i − s]d + a · d, 0 ≤ a < � k

d �} are
retrieved and additional components {Cs

c | 0 ≤ s < l, c = [i − s]d + � k
d � · d < k} are

also retrieved. According to the result of case i), the number of the additional components
is � l

d � × (k − � k
d � · d) + α′ (0 ≤ α′ < d). By integrating two terms, we can obtain the total

number of components, � l
d � × k + α (0 ≤ α < d).

Notes

1. In this paper, the terms VOD server and video server are used interchangeably.
2. In Appendix A, we summarize the symbols used in this paper.
3. The adjacent disk of disk d − 1 is disk 0.
4. In Eq. (1), we define y = [x]d if x = a · d + y, 0 ≤ y < d, for all integer values.

5. In more detail,
RV j ,k j
RV j ,k

′
j

· α-times fastforward is achieved, where RV,k denotes the average playback rate of V

with k resolution service.
6. We assume that clients arrive randomly since we focus on the stationary state where all the clients have arrived.

Although the inter-arrival time may affect the efficiency of buffer cache and disk I/O algorithms, we neglect
its effect because we assume the effective bandwidth for the performance of a disk subsystem.

7. Sigma Designs Inc.
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